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Abstract

Wepresentatheoreticalfoundationforrelativisticastronomicalmeasurementsin curved
space-time.In particular,wediscussanewiterativeapproachfordescribingthedynamicsof
anisolatedastronomicalN-bodysysteminmetrictheoriesofgravity.Todothis,wegeneralize
theFock-Chandrasekharmethodoftheweak-fieldandslow-motionapproximation(WFSMA)
anddevelopa theoryof relativisticreferenceframes(RFs)for a gravitationallybounded
many-extended-bodyproblem.In anyproperRFconstructedin the immediatevicinityof
an arbitrarybody,theN-bodysolutionsof the gravitationalfieldequationsareformally
presentedasa sumof theRiemann-flatinertialspace-time,thegravitationalfieldgenerated
bythebodyitself,theunperturbedsolutionsforeachbodyin thesystemtransformedto the
coordinatesof thisproperRF,andthegravitationalinteractionterm.Wedevelopthebasic
conceptof ageneralWFSMAtheoryof thecelestialRFsapplicableto awideclassofmetric
theoriesof gravityandanarbitrarymodelof matterdistribution.

Weapplythe proposedmethodto generalrelativity.Celestialbodiesaredescribedus-
ing a perfectfluid model;assuch,theypossessanynumberof internalmassandcurrent
multipolemomentsthat explicitlycharacterizetheirinternalstructures.Theobtainedrel-
ativisticcorrectionsto thegeodeticequationsof motionarisebecauseof a couplingof the
bodies'multiplemomentsto thesurroundinggravitationalfield. Theresultingrelativistic
transformationsbetweenthe differentRFsextendthePoincar@groupto themotionof de-
formableself-gravitatingbodies.Withinthepresentaccuracyof astronomicalmeasurements
wediscussthepropertiesoftheFermi-normal-likeproperRFthatisdefinedin theimmediate
vicinityoftheextendedcompactbodies.Wefurthergeneralizetheproposedapproximation
methodandincludetwoEddingtonparameters(%_3).Thisgeneralizedapproachwasused
to derivetherelativisticequationsofsatellitemotionin thevicinityoftheextendedbodies.
Anticipatingimprovementsin radioandlasertrackingtechnologiesoverthenextfewdecades,
weapplythismethodto spacecraftorbitdetermination.Weemphasizethenumberof feasi-
blerelativisticgravityteststhat maybeperformedwithinthecontextoftheparameterized
WFSMA.Basedontheplaneto-centricequationsofmotionofaspacecraftaroundtheplanet,
wesuggesteda newnull testof theStrongEquivalencePrinciple(SEP).Theexperimentto
measurethecorrespondingSEPviolationeffectcouldbeperformedwith thefutureMercury
Orbiter mission. We discuss other relativistic effects, including the perihelion advance and

the redshift and geodetic precession of the orbiter's orbital plane about Mercury, as well as

the possible future implementation of the proposed formalism in software codes developed for

solar-system orbit determination. All the important calculations are completely documented,
and the references contain an extensive list of cited literature.
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0 Notations and Definitions.

In this report, the notations are the same as in (Landau _: Lifshitz, 1988). In particular, the

small latin letters n, m, k... run from 0 to 3 and the Greek letters _,_, V, ... run from 1 to

3; the italic capitals A,B,C number the bodies and run from 1 to N; the comma denotes a

standard partial derivative and the semicolon denotes a covariant derivative; repeated indices

imply an Einstein rule of summation; round brackets surrounding indices denote symmetrization

and square brackets denote anti-symmetrization. The geometrical units c -- G =- 1 are used

throughout the report, where G is the universal gravitational constant and c is the speed of

light. We designate eaz_ as the fully anti-symmetric Levi-Civita symbol (e123 ----- 1); the metric

convention is accepted to be (+---); 7rn,_ = diag(1,-1,-1,-1) is the Minkowski metric in
Cartesian coordinates of the inertial RF; A PV/_n(ZA) is the Minkowski metric in the coordinates

(z p) of the RF A that is constructed in the immediate vicinity of an arbitrary body (A); gm,_
denotes the effective Riemann metric of the curved space-time; and g = det(gmn). To enable

one to deal conveniently with sequences of many spatial indices, we shall use an abbreviated

notation for 'multi-indices' where an upper-case letter in curly brackets denotes a multi-index,

while the corresponding lower-case letter denotes its number of indices, for example: (P) :=

#1#2..._p, S{j} := S,_,=...,_. When needed, we also use {L- 1}: #1#2.../-tl-1, so that the tensor

T_{L-1} = Ta,_,_...,,_l has I indices. We also denote z {L} = z_'lzt'2.., z t'z and (_{L}/(_z{L} =

OL/Oz_laz t'2 ... Oz t''. The explicit expression for the symmetric and trace-free (STF) part of the

tensor T{p} is given in (Thorne, 1980; Blanchet and Damour, 1986, 1989). For any positive
integer I we shall denote l! = l(l - 1) • ... • 2 • 1; l!! = l(l - 2) • ... • (2 or 1) as usual. A dot over

any function means a differentiation with respect to time.

1 Introduction and Overview.

1.1 The Motivation and the Structure of the Report.

The principal objective of spacecraft navigation is to determine the present and future trajectory

of a craft. This is usually done by measuring the spacecraft's coordinates and then by correcting

(fitting and adjusting) the predicted spacecraft trajectory using those measurements. There are

three different types of measurements that are used in spacecraft navigation: radiometric (range

and Doppler), very long baseline interferometry (VLBI), and optical (Standish, 1995). As well

as serving navigational needs, high precision Doppler and laser and radio range measurements

of the velocity of and the distance to celestial bodies and spacecraft are presently the best ways

to collect important information about relativistic gravity within the solar system. Combined

with the technique of ground- and space-based VLBI, these methods provide us with a unique

opportunity to explore the physical phenomena in our universe with very high precision. Most

remarkable is the increase in accuracy of the modern VLBI observations, especially in applications

to problems of modern geodesy (Soffel et al., 1991; Herring, 1995). Thus, the delay residuals

are presently of the order of 30-50 picoseconds (ps), which corresponds to an uncertainty in

length of _ 1 cm. In the navigation of interplanetary spacecraft, the short arcs of spacecraft

range and Doppler measurements, reduced with Earth orientation information referred to the

International Earth Rotation Service's (IERS) celestial system, lead to a position determination

in the extragalactic RF with an accuracy on the order of _ 20 milliarcseconds (mas). At the

same time, the VLBI observations of the spacecraft with respect to an extragalactic radio source

enable one to measure directly one component of the spacecraft position in this extragalactic RF

to an accuracy of about _ 5 mas (Border et al., 1982; Fotkner et al., 1994). As a result, the



useof suchprecisemethodsenablesoneto studythedynamicsof celestialbodiesandspacecraft
with anunprecedentedaccuracy.

In addition to theseline-of-sightmethods,the computerrevolutionof the 1990'shasrevived
interest in the classicalapproachfor determiningthe gravity field basedon the sphericalhar-
monicsrepresentation.It is now believedthat the useof sphericalharmonicsto high degree
and order, whereonly high frequencynoiseis presentin the rawDopplerresiduals,is oneof
the best reductionapproachesbecauseit allowsa fully three-dimensionalanalysis.Thus, the
gravitationalsphericalharmonicsof the Earth gravity field arecurrentlyknownup to the 70th
degreeandorderfor thesolutionsbaseduponthespacecrafttrackingdataonly,andto the 360th
degreeand order with surfacemeasurementsincluded(Rapp et al., 1991; Nerem et al., 1995).

Let us mention that currently there exists the possibility of determining the Venus gravity field

to 120th degree and order (Konopliv et al., 1995). It should be noted that the determination

of the multipolar structure of the Newtonian gravitational field of the Earth and planets with

such high resolution and accuracy enables one to take into account the relativistic corrections to

the gravitational field of these bodies. Then, by using modern techniques of data reduction, one

may generate highly precise solutions that have applications beyond that of serving the geodetic

needs (Hellings, 1986; Herring, 1996). For example, these very important results are widely in

use as the necessary foundation for studies of many modern scientific problems, such as

(i).

(ii).

Off).

(iv).

The problem of developing a more precise definition of the masses and the multipole struc-

ture of the Sun, Earth, other planets, their satellites, and asteroids (Standish, 1992; Stan-

dish, 1994; Schubert et al., 1994; Konopliv et al., 1995).

The establishment of better values for gravitational and other astronomical constants, as

well as the testing of the hypothesis of their dependence on time that was predicted by a

number of modern theories of gravity (Dirac, 1937; Anderson et al., 1986; Will, 1993).

The study of the dynamics and the evolution of the solar system, aimed at a better un-

derstanding of its metrological characteristics. This will help to solve some cosmogonical

problems, such as determining whether or not there is a second asteroid belt (the Kuiper

belt) behind the Saturnian orbit (Anderson et al., 1986), giving better numerical estimates

of the quantity of dark matter in the solar system (Braginsky, 1994; Anderson, et al., 1995),

and determining whether or not our Sun has a companion star.

Experimental tests of modern gravitational theories in the WFSMA (Damour, 1983; Will,

1993; Lebach, et al., 1995; Anderson et al., 1996), including the establishment of upper

limits on the amplitude and energy density of gravitational radiation (Anderson et al.,

1986). Also, the search for gravitational waves, their detection, and studies of mechanisms

of wave generation, as well as their propagation and interaction with matter. These studies

will increase our knowledge of the early age of the universe, its cosmological evolution, and

the behavior of stellar systems, as well as further confirming the hypothesis of the existence

of unseen matter in the universe (Anderson, et al., 1995).

The modern approach to conducting these different scientific studies should be based upon

the use of a well established common relativistic framework for both collecting and interpret-

ing astronomical observations. Until recently, this task had been done by taking into account

only the post-Newtonian corrections to the solar static spherically symmetric (Schwarzschild)

gravitational field. The basic relativistic effects, such as Mercury's perihelion advance, gravita-

tional light deflection, redshift, and time delay (the Shapiro effect), have been calculated with



post-Newtonianaccuracyby a numberof authors,andthecorrespondingresultsarewell known
(Brurnberg,1972;Misneret al., 1973; Will, 1993). It should be noted that during the last 10 years

the precision of theoretical predictions of satellite motion has increased considerably. This has

happened because some of the leading static-field post-Newtonian perturbations in the dynamics

of the planets, the Moon and artificial satellites have been included in the equations of motion

(eq.m.) and time and position transformation (Moyer, 1971; Moyer 1981; Dickey et al., 1989;

Huang et al., 1990; Dickey et al., 1994; Habib et al., 1994; Williams et al., 1996). However, due

to enormous progress in the accuracy of astronomical observations at the present time, we must
now take into account the much smaller relativistic effects caused by the post-post-Newtonian

corrections to the solar gravitational field as well as the post-Newtonian contributions from the

lunar and planets' gravities. Moreover, it is also well understood that the effects due to the non-

stationary behavior of the solar system gravitational field as well as its deviation from spherical

symmetry should also be considered (Kopejkin, 1988). The successful solution of these problems

requires a detailed critical review of modern observational methods and the development of a

consistent and physically well-founded theory of relativistic celestial mechanics and relativistic

RFs. This theory should provide one with reliable physical grounds for theoretical studies of the

new relativistic gravitational phenomena as well as meet the needs of practical astronomy.

It has long been considered that such a theory already exists in the form of the parameterized

post-Newtonian formalism (PPN) (Nordevedt, 1968a,b; Will, 1971; Will & Nordtvedt, 1972; Will,

1993). However, based on the present understanding of the problem, this point of view is not

correct. Indeed, the foundation of the PPN formalism is based upon the existence of an exclusive

set of inertial RFs. Usually, the origin of such a frame either coincides with the solar system

barycenter or it may be transformed to one by the post-Galilean coordinate transformations

(Chandrasekhar & Contopulos, 1967; Kopejkin, 1988; Will, 1993). The resultant barycentric

inertial RF is perfectly suited for analyzing both light ray propagation in the proximity of the
Sun and the motion of the planets around the Sun. However, it does not address some very

practical needs of modern astronomy, such as providing a description of a satellite's motion

around the Earth (or other planet), studying properties of the Earth's rotation, or collecting

and interpreting data from satellite laser ranging (SLR), lunar laser ranging (LLR), or ground-

or space-based VLBI. These difficulties are caused by the fact that the planet's center of mass,

in general, does not move along the geodesic line. The corresponding deviations are very small

(Misner et al., 1973; Brumberg, 1972; Will, 1993) and a product of the coupling of the planet's
internal multipole moments to the external gravitational field. It is well-known that geodesic

motion in the general theory of relativity, for example, can be is viewed as free fall. Moreover,

in the immediate vicinity of the free-falling body, one may introduce a local quasi-inertial RF.

In this RF, an external gravitational field should manifest itself in the form of tidal forces only

(Synge, 1960; Bertotti _z Grishchuk, 1990). However, the PPN coordinate system, with its origin
at the center of mass of the planet, does not satisfy this last condition, and therefore it may

not be treated as a quasi-inertial RF (Kopejkin, 1988). However, from the practical point of

view of collecting and interpreting experimental data, one needs to use a set of RFs with well-

defined geometrical and physical properties. Thus, it has been shown that a poor choice of

coordinate transformations for defining the proper RF may lead to unnecessary complications

in the equations of motion. These equations may appear to contain non-physical (or fictitious)

forces acting on the bodies in the system. Although these forces are simply a result of a 'bad'

choice of RF, their appearance in the equations of motion may make the scientific interpretation of
the collected results much more difficult. For example, the term with an amplitude of about one

meter in the relativistic theory of motion of the moon (Brumberg, 1958; Baierlein, 1967) has no

3



realphysicalmeaningwhenbuilt on the basis of the proper coordinates. The appearance of this

term is an artifact of the choice of coordinates and, therefore, the one-meter term is not observable

(Soffel et al., 1986; Kopejkin, 1988). This example suggests that a clear understanding of the

dynamic properties of a chosen RF will help make the separation between physically measurable

quantities and coordinate-induced ones and, hence, will simplify the analysis of the data obtained.

From this standpoint, the detailed construction of a relativistic theory of astronomical RFs

is greatly needed. It is especially important because at present almost all the astronomical

observations (such as optical, radio, Doppler, laser, etc.) are performed and/or processed by

experimental equipment placed on the Earth's surface. Moreover, there is great demand for

reliable relativistic navigation in outer space for near-future space missions, such as space-based

gravitational-wave astronomy. Let us also note that there are near-term plans for launching

several drag-free satellites with GPS receivers onboard: Gravity Probe B (GP-B) (Bardas et al.,

1989), LAGEOS III, a satellite test of the equivalence principle (STEP), and the Mercury Orbiter

mission, which has been proposed by the European Space Agency as a cornerstone mission under

the Horizon 2000 Plus program (Anderson, Turyshev et al., 1996). There exist plans to include

the post-post-Newtonian contributions to the light propagation effects coming from the solar

gravitational field and the post-Newtonian gravitational perturbations by the planets of the

solar system (Klioner & Kopejkin, 1992). In particular, one of the most promising projects is the

deployment into Earth orbit of a precision optical interferometer (POINTS). This satellite will be

designed to be able to measure the arcs between the pairs of stars separated on the sky by the

right angle with an anticipated accuracy on the order of a few microarcseconds (_as) (Chandler

Reasenberg, 1990). These plans encourage the development of orbit determination algorithms

that would enable one to process the data with the required relativistic accuracy. This alone

will require substantial work to be done in development of a number of theoretical and practical

questions, such as

(i). The construction of a dynamic inertial RF and a more precise definition of the orbital

elements of the Sun, Earth, moon, planets, and their satellites (Standish et al.; 1992,

Chandler et al., 1994; Dickey et al., 1994; Williams et al., 1996; Standish, 1995).

(ii). The construction of a kinematic inertial RF, based on the observations of stars and quasars

from spaceborne astronomical observatories (Fukushima, 1991a; Standish et al., 1992).

(iii). The construction of a precise ephemeris for the motion of bodies in the solar system to sup-

port reliable navigation in the solar system (Denisov et al., 1989; Standish et al., 1995; Stan-

dish, 1995). The construction of precise radio-star catalogs for spacecraft astro-orientation

and navigation in outer space beyond the solar system.

(iv). The comparison of dynamic and kinematic inertial RFs, based on the observations of space-

craft on the background of quasars, pulsars, and radio stars, as well as the verification of

the zero points of the coordinates in the inertial RF (Jacobs et al., 1993; Folkner et al.,

1994; Fukushima, 1995).

Therefore, the motivation for this research is quite natural: In order to propose the neces-

sary recommendations for corrections to existing software codes, we will re-examine the basic

concepts of high-precision navigation in the solar system. The principal goal of this report is to

provide one with a solid theoretical foundation for the relativistic astronomical measurements

in the curved space-time. To reach this goal we, by using the methods of the WFSMA, will develop

4



a newapproachto the relativistictreatmentof the satelliteorbit determinationproblem.This
approachwill be basedupon a newtheoryof coordinatetransformations(i.e., the theory of
relativisticRFs)and measurementmodelsin relativisticcelestialmechanics.The outlineof the
presentreport is asfollows:

The next subsectioncontainsa brief historical introduction to the problemof motion of
N weakly interactingself-gravitatingextendedbodies. To specifyour theoreticalstudies,we
will presenta qualitativedescriptionof the astronomicalN-bodysystemsof interest. In order
to providea solid motivationfor this research,wewill analyzethe differentmethodsusedto
approachthis problemandwill presenttheir advantagesand theencountereddifficulties.

In Section2, wediscussthe conventionalPPNbarycentricapproach,whichis basedon the
solutionto the gravitationalone-bodyproblem.Recognizingthat the generalizationof the ob-
tainedresultsintoa generalcaseof motionof anarbitrary N-bodysystemisnotstraightforward,
weanalyzethe conditionsnecessaryto derivetherestrictedsolutionfor themotionof the general
N-bodyproblem.Wealsodiscusswaysto obtainthecompletemultipolarsolutionto theproblem
in the generalcase.

Section3 is devotedto a generaldescriptionof the newmethodproposedto overcomethe
abovementionedproblems.Wediscussa newiterativeapproachto describingthe dynamicsof
an isolatedastronomicalN-extended-bodysystemin the metrictheoriesof gravity. The N-body
solutionof the gravitationalfield equationsin the properRFAoriginatedin an arbitrary body
(A) is formallypresentedasasumof thefour followingterms: (i) A_k_, which is the Riemann-fiat

Rmnst('_kl) = 0; (ii) h(Om)A, which is the gravitational field generated by theinertial space-time: A A

body (A) itself; (iii) _(0)B,omn , the perturbations caused by other bodies in the system (B _ A);

and, finally, (iv) the gravitational interaction term "-mnh_nt• This method is presented in its most

general form and, hence, it is valid for a number of metric theories of gravity. We discuss the

general properties of the post-Newtonian non-rotating coordinate transformations and present

the straight, inverse, and mutual coordinate transformations. As a possible way of generalizing

the results obtained, we discuss the use of the rotational coordinate transformations. In addition,

we discuss the necessary conditions for constructing a proper RF with well-defined dynamical

properties. Physically, these conditions should provide one with an additional inertial force acting

on the body in its proper RF such that the body will be in a state of equilibrium. Mathematically,

these conditions required that the total dipole moment of the system of the fields produced by

matter, the field of inertia, and the gravitational field taken jointly will vanish for all times.

In Section 4, we apply the proposed formalism to the case of general relativity. The celestial

bodies are assumed to consist of a perfect fluid and possess any number of the internal mass and

current multiple moments that characterize the internal structure of such bodies. We present

the physical and mathematical definitions of the proper RF in the WFSMA. We find the explicit
solution for the interaction term. This enables us to construct all the necessary expressions

for the metric tensor in both the barycentric inertial and the arbitrarily parameterized proper

quasi-inertial RFs.

In Section 5, we present the general solution for the global and local problems, as well as

show the general solution for the functions of the coordinate transformation in the case of bod-

ies with a weak external gravitational field. In particular, within the present accuracy of radio



measurements,wediscussthe generalizedFermi-normal-likeproperRF,which is definedin the
immediatevicinity of suchextendedbodies.

In Section6, wegeneralizedthe resultsobtainedon the caseof a systemof N arbitrarily
shapedand deformableextendedbodies.Todo this, westudythe existenceof the conservation
lawsin the proper RF. It turns out that the existenceof theselaws in the WFSMAmay be
shownexplicitly in the caseof well separatedcelestialbodies. This allowsus to evaluatethe
surfaceintegralson the boundariesof the domainsoccupiedby the celestialbodiesandpresent
the explicit coordinatetransformationsbetweenthe differentRFsin the WFSMAof the general
relativity. Theseresultsare the extensionof the post-Galileantransformationsobtainedby
Chandrasekharand Contopulos(1967)on thecaseof a systemof interactingcelestialextended
bodies.Wediscussthepropertiesof thecorrespondingquasi-groupof motionandits application
to the study of the dynamicsof an arbitrary N-bodygravitationalproblem.

Section7 is devotedto future relativity missionsin the solarsystem. In order to provide
the frameworkto studyrelativistic gravity for a numberof gravitationaltheories,our previous
derivationswill be generalizedon the caseof the tensor-scalartheories.As a result,weinclude
in the analysisthe twoEddingtonparameters(%13),whichallowsusto developaparameterized
theoryof astronomicalRFs.By analyzingtheequationsof motionin the two-parameterFermi-
normal-likeRF,wehaveobtainedan interestingresult: that althoughsometermsin the planeto-
centriceq.m.of the spacecraftaroundthe planetarezerofor the caseof generalrelativity, they
mayproducean observableeffectin scalar-tensortheories.This allowsusto proposea newnull
test of the SEP.Also in this section,wediscussthe other relativisticgravitationalexperiments
possiblewith the future Mercury Orbiter mission, which has been proposed by the European

Space Agency as a cornerstone mission under the Horizon 2000 Plus program. The motivation

for this research is to determine what scientific information may be obtained during this mission,

how accurate these measurements can be, and what will be the significance of the knowledge

obtained. We presentthere both quantitative and qualitative analyses of measurable effects such

as Mercury's perihelion advance, the redshift experiment, and the precession phenomena of the

Hermean orbital plane.

In Section 8, we present the hierarchy of the celestial RFs, including the four frames that are

widely in use for the practical needs of modern relativistic astronomy. Thus, in a compact and

explicit form, we show the coordinate transformations between the barycentric and the geocentric

RFs, between the geocentric and the satellite RFs, and between the geocentric and the topocentric

RFs. This presentation contains the two Eddington parameters, (% j3), which makes the obtained

results valid for a wide class of metric theories of gravity. In the discussion, we present a number

of possible areas for immediate practical application of the theory of astronomical RFs developed
in this report. We present our conclusions and recommendations for future research on relativistic

gravity in the solar system and beyond.

In order to avoid cumbersome calculations and to simplify the presentation of the main re-

sults in the text, some expressions and intermediate relations will be presented in appendices.

In Appendix A, we present the generalized gravitational potentials. Appendix B is devoted to a

discussion of the structure of the post-Newtonian power expansion of general geometrical quan-

tities such as the metric tensor, gmn; the Christoffel symbols; and the Riemann tensor, Rmnkl,

in coordinates of an arbitrary RF with respect to small parameters. Appendix C contains the
general theory of relativistic coordinate transformations. We discuss there the transformation

of the base vectors for different coordinate transitions. In Appendix D, we present the features



of the transformationsof differentequationsand quantities,suchasthe covariantgaugecon-
ditions, the Ricci tensor, the gravitationalfield solutions,and the energy-momentumtensor.
The transformationrulesfor the generalizedgravitationalpotentialsunder the post-Newtonian
coordinatetransformationarepresentedin AppendixE. The Christoffel symbols in the proper

RF are calculated in Appendix F. The calculation of the form of the inertial part of the metric

tensor in the proper RF and the form of the interaction term, as well as the components of the

Riemann tensor in this frame, are presented in Appendix G. In Appendix H, we present some

useful identities that are used in Section 6 to study the existence of the conservation laws in an

arbitrary proper RF. And, finally, in Appendix I, we have presented the astrophysical parameters

used for estimations of the magnitudes of the gravitational effects in Section 7.

1.2 The Problem of Relativistic Astronomical Measurements.

Classical Newtonian mechanics is based upon the principles of Euclidean geometry. The physical

experiments, within the accuracy available at that time, had confirmed the two basic postulates

of this geometry: that time is absolute and homogeneous and that space is also absolute and,

not only homogeneous, but also isentropic. These properties of time and space were discovered

because, for the then-known physical forces, 1 the corresponding eq.m. of Newton's mechanics

preserved their form under the Galilean group of motion. These properties may be written for

two different RFs moving relative to each other with constant speed _ as

tt = t + a, _'_ = _'- b- gt, (1.1)

where parameters a and b are the constant time shift and the displacement of the origin of

the coordinate system, respectively. This form-invariancy suggested that, independent of the

state of motion of these RFs (they may be either at rest or uniformly moving along a straight

line relative to each other), all the mechanical phenomena will behave exactly the same way in

any such RF. This principle has become known as the principle of relativity (Poincar_, 1904).

Note that transformations (1.1) are given in Cartesian coordinates. One may choose another

coordinate system (CS) in the same RF without changing its state of motion (say _) by simply

rotating the coordinate axes: r a = T_x z, where _ is a constant orthogonal rotation matrix.

Thus, Newton's mechanics had introduced into physics notions both of an absolute distance

between two points in three-dimensional space and of absolute time. In other words, he asserted

that time and coordinates are directly measurable quantities. Because of this, the theory of

gravitational measurements in celestial mechanics long was based upon the three laws of Newton's

mechanics and coordinate transformations, (1.1). From the practical point of view, there were

two astronomical RFs of primary importance: the barycentric frame (BRF), which is related

to the barycenter of the solar system, and the geocentric frame (GRF), whose origin coincides

with the Earth's center of mass. Because of the recent progress in the relativistic treatment of

an isolated N-body system, there is now clear and unambiguous agreement on an asymptotical

BRF (which is valid even through the post-Newtonian level of the WFSMA). By assuming that

the solar system as a whole is completely isolated, one may put its barycentric RF to be non-

accelerated (or to say 'at rest') and absolutely non-rotating. The latter condition implies (i) the

absence of the centripetal and Coriolis forces (dynamical inertiality) and (ii) that the coordinate

directions to the remote light sources (such as quasars) must be constant (kinematic inertiality).

In addition, the absence of any external sources of gravity enables one to consider only the proper

1There were only two known natural forces at this time: gravity and elasticity. The first one was described by
Newton's gravitational law and the second by Hooke's law.



(or 'inertial') gravitationalfield of the solarsystem.As a result,suchanRFwasusedfor a long
time asthebasictool forsolvingalmostall theproblemsin practicalastronomy(evenrelativistic
ones).

As far as the GRF is concerned, the situation turns out to be more complicated. If one

attempts to describe the local gravitational environment of some extended body from an N-body

system (for example, the Earth in the solar system), first of all, based on the results of a study of

the existence of the energy-momentum conservation laws, one generally defines the barycentric

inertial RF: (t', _"). Then, one may introduce a non-rotational accelerated GRF (t, _, which is

defined at the center of mass of the extended body under study by a coordinate transformation

similar to that of (1.1):

t' = t, _' = _+ _0(t), (1.2)

where F0(t) is the Newtonian barycentric radius vector of the body.

To analyze the gravitational environment of the body under consideration, one presents the

effective potential in the body's vicinity in the form

F(T-_ ---- V0(r-_ + utid(r-_, (1.3a)

where U0 is the body's own gravitational potential. The influence of the external bodies in the

chosen frame manifests itself in the form of gravitational tidal forces only. The corresponding

tidal gravitational potential, U tid, may be given by

utid(_ = u°xt(_0 + _ - yex_(_0)- (_. _u°xt(_0)). (1.3b)

This potential is searched for as the solution of the usual Poisson equation in the form

/NU tid ----- -4_rp_ xt (1.4a)

with the boundary conditions

_utid(¢0) = 0, utid(¢0) = 0, (1.4b)

where p_xt is the mass density of the external gravity in the vicinity of the body under study.

As a result, the theory of astronomical observations becomes inseparable from the problem of

determining the motion of celestial bodies, because the Newtonian eq.m. for the body's center
of mass is determined as follows:

_0= -_u°xt(_0). (1.5)

One may also verify that, in the proper RF for an extended body constructed this way,

the body's own center of mass will be at rest during the time of the experiment. Indeed, by

integrating the local eq.m. of the Newtonian hydrodynamics (Fock, 1955),

d?_ ---

PO-'_ = -poVU + _7p, (1.6)

over the body's compact volume, one obtains the desired result: /h_ = 0, where m_ is the body's

first (dipole) mass moment. In the body's vicinity, the external gravity produces negligibly small

tidal perturbations of the local motion, which are presently well known (Standish et al., 1992).

This leads to so-called 'quasi-inertial' properties of GRF. The kinematic advantage of these local



coordinates, (t, _, is that the RF, when obtained this way, moves with the considered body.

Their dynamic usefulness comes from the fact that coordinate transformations (1.2) Mlow one

(to some extent) to decouple the motion of the studied body from the global dynamics of the

system as a whole (Pars, 1965; Brumberg, 1972; Damour, Soffel & Xu (here and after, DSX),

1991). These are the reasons why this proper RF (or GRF) has become very useful for studying

local physics in a body's vicinity.

The situation changed drastically when, by generalizing Faraday's thoughts on electric and

magnetic phenomena, Maxwell discovered a set of equations describing electromagnetic fields.

These equations successfully described the two then-'new' forces corresponding to electromag-

netic and optical phenomena. However, it turned out that the famous Maxwell-Lorentz equa-

tions of electromagnetism were not form-invariant under the Galilean transformations, (1.1).
This was an indicator that either the laws of Newtonian mechanics were incomplete or these

transformations were wrong. From the other side, recall that transformations (1.1) were a sim-

ple consequence of the laws of Newton's mechanics. It became clear that even if some other

set of equations were substituted for these laws, transformations (1.1) may not provide a form-

invariancy for this new set. Thus, it became obvious that the principle of relativity must have
a more fundamental character. In the Poincar_ interpretation this principle was reformulated so

that the physical laws should be the same for two particular observers, one being at rest and

the other one being in the state of steady straight-line motion so that there is no means to find
out whether or not the second observer is moving. The significance of this principle was that

it stated that there are no such things as absolute space or time and, moreover, it implied the

impossibility of an absolute motion in the general law of nature.

As we know now, the understanding of this theory sparked a revolutionary change in the

course of theoretical physics in the beginning of the 20th century. The answer to this problem

was given in a series of works by Poincar_ (1904) and Minkowski (1908) (see also Lorentz et

aI., 1923): that space and time must be united together to form a four-dimensional pseudo-

Euclidean geometry. The coordinates of two points in this four-dimensional manifold are denoted

as (ct,_ --_ x n -- (x°,xa), where n = 0,1,2,3 and c is the speed of light. The square of

the geodesic distance ds 2 between the two infinitely close points of this space-time (interval)

is given by the four-dimensional analog of the Pythagorean theorem: ds 2 = _mn(x)dxmdx n.

The function _fmn(X) is the metric tensor, which has become the main object for defining the

structure of studied space-time (Eisenhart, 1926). These metric coefficients only (as referred to

a particular coordinate system), together with the coordinate differentials, will provide one with

physically measurable quantities. In Cartesian coordinates of the Galilean (inertial) RF, for all

the points of the pseudo-Euclidean space-time, this metric function may be chosen in the form of

the Minkowski metric: y(m°)n= diag(1, -1, -1, -1). As a result of such a change, the coordinates

lost their absolute meaning and could not be used for direct physical observations. Even the

differentials do not have a physical sense, because they are not directly connected with either

the distance between two points in three-dimensional space or with the temporal evolution of

the physical processes.

By analyzing the Maxwell-Lorentz equations of the electromagnetic field and the interval

in the form ds 2 = _/_)dxmdx n, Poincar_ was the first to point out that the set of these field



equationsand the quantity ds 2 are form-invariant under Lorentz' transformations, which form

the Poincar_ group of motion:

(g. r-)
t' = 7(t c-2- ) ,

V 2 1

7 = (1 - _-_)-2, (1.7a)

_" = _"-i- (7 - 1) v,) 7gt, (1.7b)

where _7is the constant relative speed between the two RFs. Thus, the study of electromagnetic

phenomena led to the discovery of a new theory of the structure of space-time.

The form-invariancy of the metric tensor under transformations (1.7) has suggested a more

general physical property, namely: for all the possible coordinate transformations between the

two arbitrary RFs, which preserve the form of the metric tensor 7ran, the physical phenomena in

both obtained frames will behave in exactly the same way. As a result, the principle of relativity

becomes simply a consequence of the latter property. The next logical step was to generalize

the equations of Newton's mechanics based on this new four-dimensional relativistic treatment.

The resultant set of equations of motion has become known as the relativistic mechanics of

Poincar_ (Sard, 1970). This theory was formulated in a covariant form which allows one to study

the physical processes in any physical RF. Note that, independently of Minkowski and Poincard,

Einstein had also formulated a new theory of space-time---the special theory of relativity (Lorentz

et al., 1923; Landau &=Lifshitz, 1988). However, this theory was formulated based only on the

Poincar_ group of motion and was constrained to the class of inertial RFs only.

The discovery of the pseudo-Euclidean geometry had finally undermined any absolute meaning

of finite time or finite distance and had substituted instead a purely relative one. Now the interval

ds2--the square of the infinitesimal distance in four-dimensional manifold--had become the only

absolute quantity. For example, based on the Lorentz transformations, the time in two different

RFs was no longer the same, but rather depended on the relative speed between the frames:

ft_l 1
At'=- dr(1 _72(t)'1 _ (1.8a)

c2 ]

Moreover, the length of an object in two RFs was also no longer invariant. Thus, a rod, which

has a length dlo in a rest frame, will experience the length contraction in an inertially moving

frame in the direction ff =- _/v, parallel to the speed of motion 5:

dl= gdlo (1 - -_)-.g2 (1.8b)

It should be stressed that formulas (1.8) are simply the consequence of the properties of pseudo-

Euclidean geometry. It should be noted that, together with the properties of this geometry,

the language of the 'microscopic' (or field) description has appeared in theoretical physics as the

necessary tool for theoretical studies of physical processes. This 'field' terminology deals with the

densities of physical quantities in a relativistic coordinate-independent way, rather than providing

a coordinate-dependent (or RF-dependent) regular 'macroscopic' treatment, and it has become

a very powerful substitution for the latter. As a result, for the special relativistic treatment of

gravitational observations, contrary to Newtonian mechanics, one should always appeal to the

notion of the 'proper' quasi-inertial RF of a body in order to correctly define the body's mass,

its barycenter, and the intrinsic multipole moments.
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Fora longtime, it wasthoughtthat thespecialtheoryof relativity, andhencethe relativistic
mechanicsof Poincar_,weretheoriesthat describedthe physicalprocessessolely in different
inertial RFs(whichmaybe linkedto eachotherby theLorentziantransformations,(1.7)). From
the other side, real astronomicalphenomenaunavoidablyinvolvedescriptionsbasedon non-
inertial RFs,which,by a misunderstanding(partiallybasedon the EquivalencePrinciple),were
consideredasa prerogativeof the generaltheoryof relativity only. However,this is not true.
Basedon thediscoveryofthepseudo-Euclideanspace-timemadebyPoincar_andMinkowski,one
mayuseaninfinite classof admissibleRFs,both inertialandnon-inertial,in orderto describethe
physicalphenomenain therealworld. Indeed,theRiemanncurvaturetensor,whichdefinesthe
intrinsicgeometryof space-time,is zeroin anyof theseframes.However,observinganyphysical
processenablesoneto confidentlydistinguishthe situationswhenan experimentis performed
in an inertial or in a non-inertialframe. This meansthat the followinggeneralizedprinciple
of relativity (Logunov,1987)is valid: Independentof the state of motionof the RF chosenfor
the experiment(eitherinertial or non-inertial),onemaydefinean infinite set of otherRFsfor
which the physicalphenomenawill behavein exactlythe sameway. Moreover,one may not
establish,by anymeans,in whichRFfrom this equivalentsetthe experimentis performed.As a
result,by definingthe admissiblecoordinatetransformationsthat leavethemetric tensorin the
chosenRF form-invariant,onedefinesthe entireinfinite setof physicallyequivalentRFs.Thus,
from Poincar_'sequationsof relativisticmechanicsandtherequirementof the form-invariancyof
the metric tensor,onemayfind anotherfundamentalgroupof motionin the pseudo-Euclidean
space-time,namely,therelativisticgroupof uniformlyacceleratedmotionof amonopoleparticle.
Indeed,for a particlewith massm0 moving under the influence of a constant force f = (f, 0, 0),

the law of motion is given by

c2 a2t2 ½

a

where a = f/mo is the corresponding constant acceleration. The interval of the two-dimensional

space-time in the co-moving RF takes the form

ds 2 = c2dt 2 2at dtdx - dx 2. (1.10)
1

1+ (1+

From this it is easy to show that the corresponding two-parametric group of motion for the

uniformly accelerated RFs may be presented as follows:

vxv a2t 21 ])t'=_/(t+to+-_-+-[(la +7)_-1 ,

C 2 a2t 2

1

+ [(1+7)- 1])a - - - 1 + x0, (1.11)1+ ce Z v 2 -J a

where to and x0 are the group constants.

One can see that, in order to preserve the form-invariancy of the metric tensor for the time

translation (given by a parameter to) contrary to the Poincar_ group, (1.7), this nonlinear group

of motion requires the transformation of spatial coordinates as well. Thus, the non-inertiality of
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the RF makesthe physicalanalysismoredifficult than in thecaseof inertial RFs.Thesituation
becomesevenmorecomplicatedif onedecidesto describethemotionof anextendedobject. This
is becausethe bodiesin this case,besidesthe 'usual' Lorentzianrelativistic contractions,will
experienceother dynamiceffectsgeneratedby the propertiesof the RFchosenfor the analysis.
In practice,oneis usuallyfacedwith the problemof extractingthe RF-inducedeffects.As the
propertiesof the pseudo-Euclideanspace-timearewellestablished,this problemmaybesolved
in a satisfactorymannerby constructinga quasi-inertialRF in the vicinity of the body under
consideration.Thevanishingof aRiemanncurvatureleadsto amaximumpossiblenumberofthe
Killing vectorsin this geometry(N=10),whichenablesusto separatephysicallyobservableand
coordinate-inducedquantitiesin asatisfactorymanner.Note that thecorrespondingtheoretical
methodsof the classicalmechanicsof Poincar@arepresentlywell testedin differentexperimental
situations,and theyareusedextensivelyin manyareasof modernrelativistic physics,suchas
high-energyphysics,theoreticalastrophysics,and solid-statephysics. Astronomers,however,
previouslyhad not fully acceptedthesemethodsinto realastronomicalpractice,astherewas
little observationaldatawith relativisticaccuracy.

This situationhaschangeddramaticallyduring the last two decades,andnow that the ac-
curacyof astronomicalobservationsenablesus to performstudiesof the physicalprocessesin
the universewith muchhigherprecision,the problemof relativisticgravitationalmeasurements
hasbecomevery important. This hasled to numerousexperimentstestingdifferenthypotheses
that havelaid the foundationsfor a numberof recenttheoriesof gravity (Will, 1993). Grav-
ity, however,remainsthe last yet unexploredfrontierof moderntheoreticalphysics(Hawking
& Israel, 1987;Damour& SchMer,1991;Damour& Taylor, 1992). This is mainly because
the weaknessof the gravitationalinteractionin the solarsystempresentsgreatdifficultieswhen
planningand performinggravitationalexperiments.The other reasonis that the discoveryof
the field equationsof the generaltheoryof relativity haschangedour physicalconceptionsonce
again. Accordingto this theory,not only arespaceand time united togetherby forming a
four-dimensionalRiemannmanifoldwith the generalmetric tensorgmn, but also it is matter

that is responsible for generating the properties of this space-time. In other words, space-time

tells matter how to move and matter tells space-time how to curve (Misner et al., 1973). There

are many other gravitational theories currently under consideration, but the metric theories of

gravity have taken a special position among all the possible theoretical models. The reason is

that, independent of the many different principles at their foundations, the gravitational field

in these theories affects matter directly through the metric tensor of Riemann space-time gmn,

which is determined from the field equations of a particular theory of gravity. In contrast to

Newtonian gravity, this tensor contains the properties of a particular gravitational theory and

also carries the information about the gravitational field of the bodies themselves. This property

of the metric tensor enables one to analyze the motion of matter in one or another metric theory

of gravity based only upon the underlying principles of modern theoretical physics.

The situation with relativistic measurements has become even more complicated. Because

it is well known that in the Riemann space-time one cannot have an explicit mathematical

definition for the proper RF, it is permissible to introduce any coordinate system. As a rule,

before solving these equations, four restrictions (coordinate or gauge conditions) must be imposed

on the components of the gmn. These conditions extract a particular subset from an infinite set

of space-time coordinates. Inside this subset, the coordinates are linked by smooth differentiable

transformations that do not change the coordinate conditions being chosen. In general relativity,

for example, there exists no absolute time or Euclidean space. Besides, one may not, in the
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generalcase,introducesome'privileged'RF in space-time.Contraryto the Newtoniantheory
of gravity,coordinatesin curvedspace-timehavenophysicalmeaningandcannotbe measured
directlyby astronomicalobservations.

Nevertheless,therearesomespecialcasesin whichonemayspeakabout privilegedcoordi-
natesin generalrelativity. Onesuchcaseis space-timehavinga weakgravitationalfield and
slowlymovingmatter. The densityof the total non-linearRiemannmetric tensorgmn of such

space-time may be linearized and presented as a sum of the density of the pseudo-Euclidean back-

ground metric ,,/rnn plus the small perturbations caused by the physical gravitational field hmn:

X/r'_g mn = X/"_7 mn+ h ran. Then, in the Galilean inertial RF, such a space-time may be covered

by coordinates that differ only slightly from the absolute time and Cartesian space coordinates

of the Newtonian theory of gravity. We shall call these space-time coordinates quasi-Cartesian.

These quasi-Cartesian coordinates are the most convenient coordinate system for developing a

relativistic theory of astronomical RFs inside the solar system. They are also used in the case of

an isolated astronomical system that consists of N well-separated and extended bodies possessing

a weak gravitational field and moving with slow orbital and rotational velocities (such as our

solar system).

The solution of the field equations of general relativity in the WFSMA for an isolated distri-

bution of matter is presently well known (Will, 1993). There have been a number of attempts

to describe the motion of different gravitationally bounded astronomical systems. This prob-

lem of describing the motion of a system consisting of N massive monopole particles was first

considered by Einstein et al. (1938); the rigid uniform rotation of the bodies was included by

Papapetrou (1948, 1951), Fock (1955), etc. It was shown that the post-Newtonian equations of

Einstein, Infeld, and Hoffmann (EIH) governing the motions of N mass points allow the same ten

classical integrals as the equations of Newtonian gravity, namely, those expressing conservation

of energy, linear momentum, and the uniform motion of the center mass of the body. Moreover,

Chandrasekhar &: Contopulos (1967) had shown there exists a way to introduce the notion of the

'center of mass' of such a system, which enables one to construct the barycentric inertial RF0.

Thus, by studying the problem of the form-invariancy of the metric tensor and the corresponding

post-Newtonian EIH eq.m., they had shown that both of these expressions are invariant under

the following 'post-Galilean' coordinate transformations that establish a correspondence between
frames with uniform relative motion:

1

t' = (l + + (1.12a)

VD x/z a

x'a=xa+ (l + _-_)vat----ff_c2 V + a---e_x"v_ +O(c-4),c2_, (1.12b)

where v a is the constant velocity of the uniform motion, mB is the post-Newtonian rest mass of

the distribution of matter under study, and a is some arbitrary constant. One can see that both of

the equations in (1.12) contain additional terms beyond those obtained by expanding the Lorentz

transformation, (1.7). The last term in eq. (1.12a) is the contribution that is unique to general

relativity, and it is this term that gives transformation (1.12) its non-Lorentzian character. The

other additional term in eq. (1.12b) represents an arbitrary infinitesimal rotation that may be

satisfactorily explained in terms of the Poincar@ group. As a result, the obtained post-Galilean

transformations are generalizations of the Lorentzian transformations, (1.7), in the gravitational

case.
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Thesepost-Galileantransformations,(1.12),areof little usefor astronomicalobservations
as they were obtainedin order to demonstratethe existenceof the barycentricinertial RF0
and they arenot suitedfor the constructionof an astronomicalRF for evenmassivemonopole
bodies.This is simplybecausesuchproperRFsgenerallywill not beinertial, but ratherquasi-
inertial. Moreover,expressions(1.12)donotaccountfor themultipolarstructureof theextended
bodies.However,weneedsometransformationthat will work,since,in orderto presentall the
necessaryexpressionsfor the metric tensorand the equationsof motion with the samepost-
Newtonianaccuracy,onemusthavea physicallygroundeddefinitionof the transformationrules
betweenthe RFs.To find this transformation,onemustexpandthe Newtoniancontributionsin
termsof the intrinsic massandcurrentmultipolemomentsof the bodies(Damour,1983,1986).
The greaterthe requiredaccuracy,the larger the numberof thesetermsthat must be taken
into account. It is knownthat the fully relativisticdefinition of thesemomentsmay begiven
in the properquasi-inertialRFonly. Sucha definitionreplacesthat whichwasgivenin the rest
frameof the one-bodyproblem.2 In presentingthesetransformations,oneshouldalsotakeinto
accountthat, due to the non-linearcharacterof the gravitational interaction,thesemoments
areexpectedto interact with externalgravity,changingthe stateof motionof the body itself.
Fock(1955)wasthe first to noticethat in orderto find the solutionof the global problem (the

motion of the N-body system as a whole), the solution for the local gravitational problem (in the

body's vicinity) is required. In addition, one must establish their correspondence by presenting

the coordinate transformation by which the physical characteristics of motion and rotation are

transformed from the coordinates of one RF to another. Thus, one must find the solutions to

the three following problems (Damour, 1987; DSX, 1991):

(1). The globalproblem:

(i).

(ii).

We must construct the asymptotically inertial RF.

We must find the barycentric inertial RF0 for the system under study. This is primarily

a problem of describing the global translational motion of the bodies constituting the

N-extended-body system (i.e., finding the geodesic structure of the space-time occu-

pied by the whole system).

(2). The local problem:

(i). We must establish the properties of the gravitational environment in the proximity of

each body in the system (i.e., finding the geodesic structure of the local region of the

space-time in the body's gravitational domain).

We must construct the local effective rest frame of each body.

We must study the internal motion of matter inside the bodies as well as establish

their explicit multipolar structure and rotational motion.

(ii).

(iii).

(3). The theory of the RFs:

(i). We must find a way to describe the mutual physical cross-interpretation of the results

obtained for the above two problems (i.e., the fine mapping of the space-time).

2Note that, due to the breaking of the symmetry of the total Riemannian space-time by realizing the 3 + 1
split (Thorne et al., 1988), these moments will not form tensor quantities with respect to general four-dimensional
coordinate transformations in the WFSMA. Instead, these quantities will behave as tensors under the sub-group
of this total group of motion only, namely, the three-dimensional rotation. This is similar to the situation in
classical electrodynamics, where electric/_ and magnetic/_ fields are not true vectors, but rather components of
the 4 x 4 tensor of the electromagnetic field F,_n = (/_ ® H) (Landau & Lifshitz, 1988).
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Becausethesolutionsto thefirst two problemswill not becompletewithout presentingtherules
of thecoordinatetransformationsbetweentheglobal and the local (or planeto-centric) RFs chosen

for such an analysis, the theory of astronomical RFs becomes inseparable from the problem of

determining the motion of the celestial bodies. From the other side, if one attempts to describe

the global dynamics of the system of N arbitrarily shaped extended bodies, one will discover

that, even in the WFSMA, this solution will not be possible without appropriate description of

the gravitational environment in the immediate vicinity of the bodies.

Concerning the problem of astronomical data reduction, first of all, one must find the connec-

tion between the coordinate quantities and the physically observable ones. Until quite recently,
relativistic reduction of astrometric observations was based on the use of the barycentric RF and

covariant definitions of observables (Zel'manov, 1956; Synge, 1960; Misner et al., 1973; Ivanit-

skaja, 1979; Soffel, 1989; Brumberg, 1991a,b; Nordtvedt, 1995). Thus, interval ds 2 in terms of

observable coordinates dX _ - (cdT, dr _) is taken to be diagonal, and it is usually presented in

the form of pseudo-Euclidean Minkowski space-time in the Galilean RF as follows:

ds 2 = gmn (x )dxm dx n = ._m_dXm dX _ - c2dT2 _ dr 2, (1.13)

where the physical time dT and the three-dimensional physically measurable distance dr 2 are

given by

g°_dx_ _oo i "dT = gv_dt + c---_00 ' dr2= (- g_ + g°"g°Z)dx"dxZ (i.i4)

In this method, the directly measurable quantities by definition are the tetrad components (or

base vectors) a n of the null wave vector of a photon projected onto a space-like hypersurface

being orthogonal to the four-velocity of an observer un: a n = Pink l, where p m = 5_ + umu, is

the projection operator that satisfies the conditions P_ = 2 and P_nPkn = pro. By definition,

the physically observable components of the vector a n in the locally orthonormalized tetrad
basis of an observer has only the spatial components a t, while the temporal one, a 6, is equal

to zero. Contraction of the components a n with the basis vectors APn, i.e., a _ = A_a n, is a

covariant quantity that is independent of the choice of RF. This gives the procedure of relaying
the coordinate quantities dx p to the observable ones dX _ = (cdT, dr _) as follows: dXP = A_dx n.

From equation (1.13), we can find the following relation:

ds 2 = __p_dX_dX _ s p m n----AmAnO_-_dx dx = gmndxmdx n, (1.15)

which provides one with the necessary equation for finding the components of the tetrad:

s p (1.16)grnn = )_m _n O_ •

From this equation and with the help of relations (1.14), one, in principle, may find all the

necessary basis vectors A_ (Logunov, 1987; Soffel, 1989). Using this technique as well as the

special methods of the Riemann geometry, one may establish the relationships between the
basis vectors and transform the measurable components a _ = (0, a t) to the coordinates of the

barycentric RF. However, the reduction formula obtained this way has been proven to contain
a non-observable coordinate-induced contribution in the relativistic terms (Klioner _z Kopejkin,

1992). For example, the barycentric velocity of the astrometric spacecraft orbiting the Earth is

not directly observable and cannot be derived with the requisite accuracy with this barycentric
method. To solve this and some other problems unavoidably arising in the solely barycentric

approach, a consistent relativistic theory of astronomical RFs is needed.
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As wehavementionedearlier,a well-definedproperRFmustbe linkedwith the inertialRF0
byrelativisticcoordinatetransformationsthat introducenospurioustermsinto themetricor the
equationsof motionof therelativistic local problem. However, the precise definition of the quasi-

inertial proper RF in a curved space-time (even in the WFSMA) is not quite straightforward.

We know that in freely falling inertial frames, the external gravitational field appears only in

the form of tidal interactions. Up to these tidal corrections, freely falling bodies behave as if

external gravity were absent (Synge, 1960; Bertotti & Grishchuk 1990). The general theoretical

consideration in this case is usually based on the geodesic equation

du n

- r_luku z. (1.17)
ds

This equation may be interpreted as if on the left side we have the four-acceleration of the

particle, while on the right side is the force acting upon the particle. By careful choice of the

coordinates, one may make the Christoffel symbols F_l vanish in the immediate vicinity of the

body's world line, which will put this force equal to zero (Fermi, 1922a,b; Landau & Lifshitz,

1988). This allows one to use the analogy of inertial motion and, as a result, the four-velocity

may be parameterized by the natural parameter s along the geodesic: u n = ans H- bn, with a n

and bn being the arbitrary constant parameters. The analysis shows that in the vicinity of the

world line of the origin of this well-defined RFA, the coordinate transformation from the inertial

RFo (x n) ------(x °, x _') to the physically justified RFA (y_) -----(yO, y_) must have the structure of

a Taylor expansion with respect to the powers of a spatial coordinate y_ (Manasse &: Misner,
1963; Manasse, 1963; Misner et al., 1973):

x n n 0 n 0 1 n 0= XAo(YA)+  AAYA)" + + (1.18)

where the function n 0XAo(YA) represents the world line's description of the origin of the coordinates

(_A), and the functions rA n and 1"An# are coefficients of expansion. This relativistic transfor-
mation should replace the post-Galilean transformations (1.12) as well as the special relativistic

group of motion of the uniformly accelerated RFs, (1.7), allowing them both to be generalized

in the case of a system of N arbitrary extended self-gravitating bodies.

It should be noted that the use of the approach described above was based upon the geodesic

equation (1.17), but, as we know, extended bodies do not move along the geodesic lines. Instead,

the interaction of their intrinsic mulipole moments with external gravity causes deviation of their

motion from the geodesic. This means that this geodesic method is valid only for the case of

monopole structureless test particles. In order to provide the dynamic definition for the proper

RF, one should obtain the eq.m. of the extended bodies and require that the acceleration of the

body will vanish in its proper RF. One way to do this is to generalize the Fock-Chandrasekhar

approach in derivation of the eq.m. for the extended bodies, which is based upon the equation
of the conservation of the density of the energy-momentum tensor _nn in the form Vrn26ran = 0.

One may expect that the correct transformations will modify the structure of expressions (1.18)

in the higher-order terms of the spatial coordinates: --- yl g}, where (k > 3).

We should mention here that in the scientific literature, in addition to the expression 'ref-

erence frame,' the notion of a 'coordinate system' (CS) has recently come into use (Kopejkin,

1988; Brumberg &: Kopejkin, 1988a, b; DSX, 1991-1994). This confusion in terminology partially

came from a misunderstanding of the basic principles of the theory of relativistic observables

in the curved space-time developed by Zel'manov (1956). In accord with his chronogeometric
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classification,oneshoulddistinguishbetweenthesetwo physicallydifferentconcepts.Thus, the
RFis anarbitrary setof fourcoordinateschosento definethe positionof the body understudy.
As weknow, in order to properlydescribethe motionof the N-bodysystem,oneshouldhave
at leastN+I of theseRFs(DSX,1991).The CSis the coordinatesonemaychooseto describe
the physicalprocessesin the vicinity of the body in its properRF. A coordinatesystemis a
particular codefor labelingpointsin anRF by somenumbers.However,oncethe RF hasbeen
chosen,onemay not makethe choiceof the CSarbitrarily. In order to introducethe CSone
mustfulfill the chronogeometricrequirements,whichbasicallystateor saythat, while introduc-
ing the CS,oneshouldn'tchangethe stateof motionof the RF alreadychosenfor solution. In
otherwords,the choiceof the CSshouldprovideonewith a newRF that shouldbephysically
equivalentto theold one. In practice,oneusuallymayintroducean infiniteclassof CSswithout
violating this equivalency(Zel'manov,1956;Logunov,1987;Denisov& Turyshev,1989).From
the otherside,it is well knownthat in curvedspace-timethereareno inertial RFsevenin the
WFSMA;insteadone may introduceonly quasi-inertialones. Moreover,a non-optimalchoice
of the CSmay changethe dynamicpropertiesof the RF and maysignificantlycomplicatethe
eq.m.of the bodies,leadingto the wrongconclusions(Kopejkin,1988).Thismeansthat a clear
physicaldefinitionfor the RFisveryimportant. Suchadefinitionshouldenableoneto studythe
form-invariancyof the correspondingmetric tensor.As a result,onemayreconstructthe group
of motion,which leavesthis metric tensorform-invariant,andwhichwill provideonewith the
classof admissiblephysicallyequivalentcoordinatetransformationsin the RF of interest. We
will keepthis relativistic terminology,andin our furtherdiscussion,wewill distinguishbetween
the CSandthe RF.

As we noted before,the propertiesof the properRF shouldbe basedprimarily upon the
structureof the metric tensorandthe equationsof motionof the local problem. For practical

reasons, in order to establish the physical characteristics of the proper RFA constructed for a

particular body (A) from the system, it is best to use the well-known properties of the freely

falling RFs as a first approximation when examining the interaction between the bodies. Thus,

the expected propert!es of a physically well-defined proper RFA may be expressed as follows:

(i).

(ii).

The gravitational field solutions for both relativistic global and local problems should be

obtained with the same covariant gauge conditions. At least up to the terms describing the

motion of the mass monopoles, the metric tensor and the eq.m. of the local problem must

not depend on the 'absolute' velocity of the motion of the origin of the proper P_A relative

to the inertial RF0. Both the tensor and the eq.m. in this case may admit the dependence

on the relative velocities of the bodies only (Fock, 1955; Kopejkin, 1988). The body's own

translational motion in its proper RF should vanish.

This field in the local region must be made up of four physically different contributions,

namely, the proper and external gravitational fields, the field of inertia, and the gravita-
tional interaction term. The proper gravitational field outside the body should be describ-

able by the set of mass and current intrinsic multipole moments including the monopole,

the dipole, etc. (Thorne _z Hartle, 1985; Kopejkin, 1988). The gravitational field of the

external bodies must be presented in the proper RFA solely in the form of tidal terms

generated by mass and current multipole moments of these bodies (Fermi, 1922a,b; Synge,

1960). The field of inertia is due to the specific properties of the coordinate transformations
chosen for the construction of this RF. The interaction term describes the mutual coupling

of the three above-named terms.
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(iii). Coordinatetransformationsbetweenthe differentRFsshouldbe homogeneousfunctions
omitting the infinite numberof non-singularpartial derivatives.Thesefunctionsshould
not violate the gaugeconditionschosenfor the problemand mustbecompletelydefined
by meansof the local gravitational field at the origin of the coordinates of a particular

quasi-inertial proper RF.

For a long time it was thought that the physically adequate local RF must physically resemble a

frame that falls freely in the background field created only by external bodies (Kopejkin, 1988).

However, this is not true. This effect is due to the presence of the gravitational interaction

term, which reflects the non-linear nature of gravity. When describing the motion of a monopole

particle, one may use this analogy and describe the motion of the body as if the external gravity

were absent, but, in the general case of the extended self-gravitating body, one must take into

account the coupling of the body's intrinsic multipoles to the external field. The existence of

this coupling should be reflected in the form of the transformation functions. As a result, one

should not think that the 'good' proper KF may be realized as a locally inertial RF for a massless

test body (Manasse & Misner, 1963; Misner et al., 1973; Ni, 1977; Ni & Zimmerman, 1978).

Physically, we are looking for an RF where one may effectively separate the local physics from

the external gravitational environment. This is why we would like to apply such an elegant

and simple Newtonian tidal approach to the post-Newtonian physics of the WFSMA. From the

mathematical standpoint, we are looking for a solution to the local problem for which the resultant

space-time in the proper RFA will be tangent to the total effective space-time generated by all

the bodies in the system, including the body (A). It was shown that the solution with these

properties could be found only at the immediate vicinity of the body and that the smaller the

Riemann curvature of the effective space-time, the further out would be the boundary of validity

of this solution (Brumberg _: Kopejkin, 1988). Note that the existence of a well-defined proper

RF has been more or less explicitly assumed by many authors (see, for example, Misner e_ al.,

1973; Li & Ni, 1978, 1979a,b; Will, 1993; Nordtvedt, 1995).

1.3 The Qualitative Description of the Astronomical Systems of Interest.

In order to provide a quantitative description of the relativistic motion of an astronomical

N-body system, let us first qualitatively define the small parameters involved in the description

of such a system. It is known that there are several major methods for studying the dynamics

of such systems (Damour, 1983, 1986), depending on the relationships between the astrophysical

parameters characterizing the orbital motion; rotation; gravitational field inside and outside the

bodies; their sizes, shapes, and internal structures; and the distance between the bodies. We

shall investigate a structure of space-time for the case of a gravitationally bounded and isolated
distribution of matter. We will restrict our attention to only N-body systems, such as our solar

system, which have slowly moving matter and weak gravitational fields both outside and inside

the bodies. Let us assume that non-gravitational forces are absent and that the bodies are well

separated. Our assumptions then are that the velocities of the orbital motion of the bodies,

vB, are non-relativistical ones (i.e., considerably smaller than the speed of light c, vB << c)

and that any two arbitrary bodies in the system are at distances rBAo that are considerably

greater than their radii, LA and LB: rBAo > LA, LB. Note that the motion of the bodies at

distances rBAo '_ rgA, rgB, where rg is the gravitational radius of the body, has a highly unpre-

dictable character and will require very different mathematical techniques (Shapiro &: Teukolsky,

1986a,b; Thorne, 1989). Furthermore, let us denote the following quantities for each body in

the system: rn B is the mass of the body (B); rBo is the Newtonian barycentric radius vector of
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this body; LB is its mean radius; DB is the minimal distance between the body under question

and its nearest companion in the system; t7B is the internal velocity (rotational grot and plus

oscillatory gosc) of the element of the body's matter in the proper RFB; u2B is the frequency of

its rotation in this RFB; "ItB_} and StB_}''" are its internal mass and current moments of the kth

order, respectively; and, finally, M0 and L0 denote the mass and maximal diameter of the entire

system.

Then, making use of the definitions above, we will concentrate our attention on a solution

of the problem of motion of such a gravitationally bounded astronomical system of N extended

bodies in the WFSMA. This approximation may be used successfully if the system of interest

admits the existence of the following four groups of small parameters induced by the local and

global of the bodies in the system (denoted with the (1) and (g) subscripts, respectively):

(1). The shape- and size-induced parameters. We presume that for each body in the system the

following parameters of a pure geometrical nature may be introduced:

(i). 59 ,_ sup[SgB = LB/DB] << 1, which describes the quasi-point structure of each body
in the system;

(ii). 5t "_ sup[ 5B = I{g}/mBL_] << 1, which characterizes a dimensionless measure of

the deviation of the distribution of the body's matter from a spherically symmetric
distribution.

(2). The special relativistic parameters. The orbital and rotational motions of the bodies in the

system generate the following dimensionless parameters:

(i). eg _ sup[c B = VB/C] << 1, characterizing the speed of the orbital motion of the bodies;

(ii). el _ sup[E B = UB/C] "_ S{1}/mBLBC _ wBLB/c << 1, describing the slowness of the

rotational motion of the bodies.

(3). The general relativistic parameters. The gravitational field produced by the bodies in the

system may be characterized as follows:

(i). 77g --, sup[z? B = c-2GmB/DB] = rgB/DB <_ 1, which describes the weakness of the
gravitational field outside the bodies;

(ii). 771_ sup[77B = c-2GmB/LB] = rgB/LB << 1, which describes the weakness of the

gravitational field inside the bodies.

(4). The background-induced parameters. For an isolated system, the absence of initial inho-

mogeneity of space-time caused by in-fallen radiation, external gravitational sources, or

cosmological evolution may be characterized by the parameters

(i). h _ Jig<°> - "ym_ll/(Mo/Lo) << 1, which describes the smallness of the maximal de-
viation of the background metric _<0> from the Minkowskian metric _/rnn everywheretJrnn

in the system.

(ii). a -,_ h/wB << 1, which describes the quasi-stationary behavior of the background
metric.
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Weshallassumethat anyprocessesin thesystemmaybeconsideredto beadiabatic(,-_1yr)
in comparisonto the characteristictime scaleof the cosmologicalevolutionof this background
space-time(,-_101°yr) (asdescribedby the Robertson-Walkersolution).Moreover,asymptotic
regionsof the isolatedN-bodysystemarepresumedto be in astateof freefall. This meansthat
the influenceof therest of thematter in the universeon the local dynamics is of the order 10-24 ,

while the relativistic gravitational perturbations in the system are expected to be in the range of

10-s - 10-21 (Will, 1993). With these expected accuracies, the influence of the rest of the matter

in the universe on the local dynamics of the bodies in the system may safely be neglected. Let us

denote this background space-time as _/rnn. Although in the general case this background metric

may have arbitrary properties, for the case of an isolated system of astronomical bodies and for

the WFSMA, one may take this metric in the form of space-time with a constant curvature or

introduce flat Minkowski space-time in the vicinity of the system under consideration. These

assumptions are necessary in order to justify the existence of a baxycentric asymptotically inertial
RF.

With these assumptions and consequences, the dependence on the background-induced pa-

rameters h and a in the corresponding eq.m. of the extended bodies may be neglected. The

equations in this case may be schematically presented as follows (Damour, 1987):

d2xB _ _.B[_g, 6l; £9, _l; l]g, ql]. (1.19)
dt 2

This expression may be formally expanded with respect to powers of the remaining small pa-

rameters, which may be given by

d2xs
-- E ..7"Zmnm" 6gk_ie_%}_r_g777. (1.20)

d$2
k,l,rn,n,p,q>_O

Depending on the relations between the parameters in any particular problem, there exist several

basic approximation methods. Our approach uses an assumption of a weak gravitational field

inside and outside the bodies as well as an assumption about the slowness of the dynamic

processes in the system. For this case, some of the parameters introduced above are linked

by equalities or inequalities. Thus, the first relation may be written as _B = 6B_Bg'u, which

automatically gives z]gB < _igs << 1 or, for the entire system, _g < 6g << 1. Since we are considering

a gravitationally bounded N-body system in the WFSMA, there should exist relations linked by

the virial theorem v2/c 2 rgB/D B and 2 2.._ Vosc/c _ rgs/L B (Fock, 1955; Chandrasekhar, 1965),

such that the parameters eg and _9 are equivalent and connected by the following relation:
2

eg _ _g. The parameters e_ and r]B are different and vary from body to body in the system.
One may also limit the behavior of matter forming the bodies such that 'arbitrary bodies' must

T(K} /T{K} . S{B K}have slowly changing internal mulipole moments: "B I'B _ eB kwB, .._ _?BI{K}. By

assuming this, we exclude from this analysis such systems where the bodies are rapidly changing

their multipole structure with time. Fortunately, all the celestial bodies in our solar system

satisfy these conditions.

Moreover, each body studied in this report will be supposed to be isolated, i.e., the immediate

vicinity of the body is devoid of matter and non-gravitational fields, and the distance, DB (the

scale of homogeneity of the space-time), is large compared with the body's size, LB. For such

an isolated body, one may split space-time up into three regions as measured in the body's

'instantaneous' proper RFB (Misner et al., 1973; Thorne & Hartle, 1985; Kopejkin, 1988): the

local region, which contains a world-tube surrounding the body and extending out to some radius
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rl > LB; the buffer region, extending from radius rt to some large ra_iius r0 < Ds; and the

external region, located outside the distance r0. In the local region, the body's own gravitational

field dominates, but in the external region, gravitational fields of other bodies become important.

The buffer region is placed in the vicinity of the distance r* --_ Ds(rns/Mo) 1/3 from the body,

which is defined from the condition that the body's gravitational influence is approximately

equal to the gravitational influence of the external masses. The buffer region plays the role of

an asymptotically fiat space-time region for the gravitational field of the body in question. In

other words, the total three-dimensional volume VN, which is occupied by the N-body system

under study, may be split into N non-intersecting domains defined around each body in the

system plus the buffer domain do. The situation is similar to that in the problem of the study

of stellar stability of the solar system (Gladman & Duncan, 1990; Holman & Wisdom, 1993).

Within each domain dB where the gravitational influence of a particular body (B) is dominant

over external gravity, the orbits of massless test particles will be stable and remain well inside

this domain. In the buffer domain, the trajectories of particles are unstable. As a result, the

set of small parameters defined above, in the case of the local problem, should be supplemented

by another parameter, namely the parameter of geodesic separation, AB = lYB]/DB < 1, where

Ls <_ YB <--r* is the distance from the world line of the body (B) to the current point of interest

inside the domain dB. This interpretation enables us to evaluate the surface integrals at the

boundaries of these interacting domains as well as to define the boundary of validity of the

expansions with respect to the small parameter AB.

1.4 Different Methods of Constructing the Proper RF.

The metric approach in the theories of gravity permits one to choose any RF to describe the

gravitational environment around the body under question. As we know, a poor choice of the

new coordinates may cause unreasonable complications in the physical interpretations of the

data obtained (see the related discussion in Kopejkin, 1988; Soffel & Brumberg, 1991). Recently,

several different attempts were made to remove these complications and consequently improve

the present solution to the N-body problem in the WFSMA (see, for example, Ashby _: Bertotti,

1984, 1986; Brumberg & Kopejkin, 1988a,b; Kopejkin, 1988; Klioner, 1993; DSX, 1991-94).

Although these methods represent a significant improvement in our understanding of the general

problem, not one of them gives a complete 'recipe' to overcome the difficulties stated above.

The methods differ in their physical and mathematical treatment of the three problems,

which constitute the general problem of motion of a gravitationally bounded astronomical N-

body system (the global and the local problems and the theory of the RFs). One such method

was proposed by Bertotti (1954) and has been further developed in a number of publications by

Ashby and Bertotti (1984, 1986), Bertotti (1986), Ashby and Shahid-Saless (1990), Shahid-Saless,

Hellings, and Ashby (1991), and Shahid-Saless (1992). An equivalent method was proposed and

developed to the extent of practical applications by Fukushima (1988, 1991a,b, 1995a,b). In

these works, the 'good' proper RF is constructed within the first post-Newtonian approximation

(1PNA) of general relativity for a specific form of the EIH metric (Einstein et al., 1938). The
EIH metric was obtained in the inertial RF0 and describes the gravitational field only outside

the bodies, which may be regarded as massive point particles or spherically symmetric and

non-rotating extended bodies (Fock, 1955).

In the Bertotti-Fukushima method, the construction of the local RF is based upon finding the

background external metric for the body under consideration. The external metric is obtained

from the complete EIH metric by dropping all of the divergent or undefined terms on the body's
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center of inertia world line. Then, a local Fermi-normal-like frame (Fermi, 1922; Manasse & Mis-

ner, 1963; Misner et aI., 1973) is defined in the body's vicinity using the background metric with

respect to which the body moves along the geodesic. After that, the coordinate transformation

between the Fermi frame and background metric is obtained. The transformation is applied to

the complete EIH metric and, thus, the 'good' proper RF is obtained. The body's gravitational

field in this proper RF is spherically symmetric (Schwarzchild) and the gravitational field of dis-

tant bodies appears only through the curvature tensor of the background metric, i.e., through

the tidal effects.

The Bertotti-Fukushima method is conceptually simple. It confirms our expectations that the

physically adequate proper RF exists and gives an insight into the structure of transformations

(1.18). However, this method of construction of the Fermi normal coordinates for massive bodies

has some drawbacks (Kopejkin, 1988), namely:

(i). The background external metric was not derived by solving the gravitational field equations.

(ii). There are physical and mathematical ambiguities in the way of constructing the external

metric. These ambiguities are caused by the terms describing the back action of the grav-

itational field of the body under consideration on the external gravity produced by other

bodies (Thorne _z Hartle, 1985).

(iii). The method under review cannot be used for derivations of the eq.m. of bodies, i.e., their
world lines. A choice of the body's center of inertia world line as a geodesic is justified only

a posteriori and with the help of quite a different technique (EIH, 1938; Papapetrou, 1948,

1951; Brumberg, 1972; Damour, 1983; Thorne & Hartle, 1985; Kopejkin, 1985, 1987).

(iv). The method has been elaborated only for the special case of spherically symmetric and

non-rotating bodies. It is completely unclear how one might construct the Fermi normal

coordinates in real astronomical situations that are considerably more complicated. This

method is inapplicable even to the Earth itself, which has oblateness and rotation that may

not be ignored (Kopejkin, 1988).

(v). The proposed coordinate transformations between the RFs are incomplete, which signifi-

cantly limits the applicability of the results obtained in real astronomical practice.

An important method of construction of the 'good' proper RF was proposed by Thorne and

Hartle (1985) (see also Fujimoto &: Grafaxend (1986)) and developed to some extent by Zhang

(1985, 1986) and Suen (1986). The Thorne-Hartle method is conceptually elegant and has

produced the largest corrections to the geodesic law of motion and the Fermi-Walker law of

transport (Misner et al., 1973). The method consists of determining the metric tensor from the
Hilbert-Einstein equations under the condition that one satisfies the properties of the well-defined

proper RF that were mentioned above. Thus, the metric in this method is derived entirely in the

'good' proper RF. The solutions of the gravitational field equations are searched for in a vacuum

region of space-time under de Donder (harmonic) gauge conditions in the body's neighborhood

where the gravitational field is weak. The metric tensor is represented in the form of an expansion

in powers of the small parameters mB/r, r/R, etc., where mB is the body's mass, r is a distance

from the body, and R is an inhomogeneity scale (distance between the bodies). The coefficients of

the expansion are the internal and external multipole moments of the gravitational fields created

both by the body under consideration and the external gravity, respectively. In this method, the

information about the properties of the chosen RF is completely contained in the set of these

multipole moments.
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Althoughthe Thorne-Hartlemethodrepresentsan importantprogressionin our understand-
ing of the motion of unisolatedbodiesand their interactionwith the external universeand
providesan important insightinto thephysicalstructureof a multipoleexpansionof the metric
tensorin differentRFs,it cannotbeusedimmediatelyinephemerisastronomy.Themainreasons
for this areasfollows:

(i). The finding of the solutionsof the Hilbert-Einsteinfield equationsand the matchingof
the asymptoticexpansionsweredoneformally.Sincethegoalof thepaperwasto find the
largestcorrectionsto the lawsof motionandprecessiononly,themethoddoesnot provide
a completemultipole treatmentof extendedbodies.As a result, the internalmultipole
momentsarenot presentedasintegralsoverthevolumesof thesourcesandthereforehave
no clearphysicalmeaning(Kopejkin,1988).

(ii). The authorshavenot presentedthe coordinatetransformationbetweenthe RFsusedfor
the analysis.They haveconstructedonly the 'instantaneous'properRF,whichcoincides
with thebody'scenterof inertiaat aparticularmomentoftime. Astime goeson, theorigin
of the 'instantaneous'properRFpropagatesalonga geodesic,but, in the generalcase,the
body'scenterof inertiaworld linedoesnot. The deviationfrom the geodesicis causedby
the interactionof the body'sownintrinsicmultipolemomentswith the externalgravity.
This leadsto a drifting of the 'instantaneous'properRFfrom thebody'scenterof inertia,
which is not acceptablefor astronomicalpractice(Soffel&=Brumberg,1991;Williams et

al., 1991).

Another method of constructing of the 'good' proper RF was proposed by D'Eath (1975a,b)

(see also papers by Kates (1980a,b) and Damour (1983)). These papers are devoted to the

derivation of the eq.m. of compact, strongly gravitating astrophysical objects such as black holes

and neutron stars. The authors have applied an interesting mathematical method of matched

asymptotic expansions, which was not developed to be used in practical astronomical applica-

tions for the more common case of weakly gravitating bodies. There have been many works in

which construction of the 'good' proper RF has been accomplished with the help of infinitesi-

mal transformations (Fukushima et al., 1986; Hellings, 1986; Vincent, 1986). Unfortunately, the

methods used in these works may not be considered to be satisfactory since they are based upon

heuristic principles rather than exact theory (Kopejkin, 1988).

The critical breakthrough in construction of a relativistic theory of RFs appropriate for as-

tronomical practice was achieved by Brumberg and Kopejkin (for a detailed description see

Kopejkin, 1985, 1987, 1988; Brumberg & Kopejkin, 1988a,b; Voinov, 1990; Brumberg, 1991a,b,
1992; Klioner &: Kopejkin, 1992; Brumberg et al., 1993; Klioner, 1993; Klioner & Voinov, 1993).

The relativistic theory developed by Brumberg and Kopejkin combined the basic ideas of Fock

(1955) on the post-Newtonian approximation scheme; Thorne (1980) and Thorne & Hartle (1985)

on multipole formalism; and D'Eath (1975a,b), Kates (1980a,b), Kates &: Madonna (1982), and

D'Eath & Payne (1992) on matched asymptotic expansions.

The Brumberg-Kopejkin method was the first to develop the three sub-problems of the grav-

itationally bounded astronomical N-body system. The authors identify the metric tensor of the

relativistic global problem with the solution of an isolated distribution of matter in the inertial

RF obtained in the 1PNA of general relativity (Fock, 1955; Brumberg, 1972; Will, 1993). The

solution of the local problem is formally presented as an isolated one-body solution corrected

by electric-type and magnetic-type external multipole moments (Thorne, 1980). The form of
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thesemomentsreflectsthe propertiesof the properRF chosenfor the analysisof the gravita-
tional environmentof the body under study. The structureof thesemomentsaswell as the
post-Newtoniancoordinatetransformationsbetweenthe inertial and the quasi-inertialRFsare
derivedby matchingbothsolutionsin the body'sneighborhood.

This methoddemonstratesa notableprogressionin the theoryof astronomicalrelativistic
RFsdevelopedto describethemotionof a systemof N extendedbodiesin the WFSMA.However,
this methodalsohassomedrawbacks:

(i).

(ii).

(iii).

(iv).

The authorshavemadead hoc assumptions about the various multipole expansions of the

metric tensor and coordinate transformations that are only partially justified by some later

consistency checks (DSX, 1991).

The method to derive the solution to the Hilbert-Einstein gravitational field equations of

the general theory of relativity based on the Anderson-DeCanio approach (Anderson &

DeCanio, 1975; Anderson, J. L. et al., 1982) is not covariant. In particular, based only on

this method, it is not possible to derive the explicit solution to these field equations in an

accelerated proper RF linked to the body's center of inertia. As a result, the introduced

'external' multipole moments do not have a clear physical meaning.

The obtained relativistic coordinate transformation between the different RFs is incomplete

as it contains only contributions from the leading intrinsic multipoles of the body (the mass

monopole and dipole and the current dipole). The contributions from the other intrinsic

multipoles are hopelessly mixed with the external moments in the structure metric tensor

of the local problem. Thus, the transformation does not take into account the non-linear

coupling of the body's own gravitational field to external gravity even at the Newtonian

level. As a result, the origin of the proper RF coincides with the center of inertia of the

body at a particular moment in time only, and, as time goes on, they will drift apart.

The method under review does not provide us with the necessary microscopic description

of relativistic phenomena in terms of densities of the gravitational fields. Thus, the mass of

the bodies, the momentum, and the angular momentum were never explicitly defined. The
parameters introduced to substitute these quantities were never checked as to whether or

not they correspond to the integral conservation laws in the proper RFs of the bodies. In

addition, the mass density of the gravitational field in the local region at the Newtonian level

is given solely by the body's own mass density. But the local gravitational field contains

tidal terms due to the external bodies. As a result, the theory does not admit a special
relativistic treatment of the N-body problem in the sense of the mechanics of Poincar6.

Recently, a very powerful approach to this problem has been elaborated by Damour, Soffel,

and Xu (DSX, 1991-1994), Blanchet et al. (1995), and Damour & Vokrouhlick:_ (1995). It

combines an elegant ('Maxwell-like') treatise of the space-time metric in both the global and local

RFs with the Blanchet-Damour multipole formalism (Blanchet & Damour, 1986). This approach

allows one to relate the multipole expansions of the gravitational field to the structure of the

source of gravitation. This method, though very promising and attractive, still requires extensive

development to make it useful for practical astronomical applications. Besides this, the method

under review has some problems that should be worked out in a more physically grounded way.
These include the following:
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(i).

(ii).

(iii).

The Blanchet-Damour'external'multipolemomentsweredefinedin the rest frameof an
idealizedisolateddistribution of matter, sothey must be modifiedin order to take into
accountthenon-inertialityof theproperRFaswellasthe interactionof the body'sproper
gravitationalfield with externalgravity.

TheproposedrelativisticcoordinatetransformationbetweenthedifferentRFsis incomplete
becauseit doesnot take into accountthe termsdue to interactionof the body's own
gravitationalfieldwith externalgravity.Moreover,thesuggestedcoordinatetransformation
completelyneglectsthe precessionterm and doesnot includethe termsdueto interaction
of the body'sintrinsicmultipoleswith the externalgravity.Thismeansthat theproperRF
constructedwith thesetransformationsin the caseof monopolestructurelessparticlesdoes
not endupwith anRFdefinedona geodesicline,which isguaranteedby the Principleof
Equivalence.It shouldbenotedthat the origin of the properRF, in the generalcaseof
extendedbodies,coincideswith thecenterof inertiaof the local field in the initial moment

of time only, and it drifts away as time progresses. This leaves the quantities, calculated

with respect to such a proper RF, physically ill defined (Damour & Vokrouhlick_,, 1995).

The solutions of the Hilbert-Einstein equations in the different RFs were obtained using

non-covariant gauge conditions. This does not provide one with a clear understanding

of what part of the solution of the local problem is due to the gravitational field, what

is caused by the contribution of the inertial sector of the space-time, and how these two
interact with each other.

(iv). At this time, the method under review may not be extended for analysis of the WFSMA of

other metric theories of gravity.

In light of this, the principle purpose of the present report is to develop a classic field approach

to the problems of astronomical measurements in the WFSMA of a number of modern metric

theories of gravity. This approach will combine the well-established methods of the relativistic
mechanics of Poincar_ with the Fock-Chandrasekhar treatment of the relativistic many-extended-

body gravitational problem (Fock, 1955, 1957; Chandrasekhar, 1965). One of the main goals of

this research was to develop a foundation for extending the applicability of the PPN formalism,

which has become a very useful framework for testing the metric theories of gravity.
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2 Parametrized Post-Newtonian Metric Gravity.

In this section, we will discuss the status of the problem of constructing a solution to the grav-

itational field equations for a gravitationally bound astronomical N-body system. Within the

accuracy of modern experimental techniques, the WFSMA provides a useful starting point for

testing the predictions of different metric theories of gravity in the solar system. Following Fock

(1955, 1957), the perfect fluid is used most frequently as the model of matter distribution when

describing the gravitational behavior of celestial bodies in this approximation. The density of

the corresponding energy-momentum tensor _rnn is as follows:

(2.1)

where P0 is the mass density of the ideal fluid in coordinates of the co-moving RF, u k = dzk/ds

are the components of invariant four-velocity of a fluid element, and p(p) is the isentropic pressure

connected with p by an equation of state. The quantity pII is the density of internal energy of an

ideal fluid. The definition of H is given by the equation based on the first law of thermodynamics

(Fock, 1955; Chandrasekhar, 1965; Brumberg, 1972; Will, 1993):

where _ = x/-L-gpo u° is the conserved mass density. Given the energy-momentum tensor, one

may proceed to find the solutions of the gravitational field equations for a particular relativistic

theory of gravity. The solution for an astronomical N-body problem is the one of most practical

interest. In the following subsections, we will discuss the properties of the solution of an isolated

one-body problem as well as the features of construction of the general solution for the N-body

problem in both barycentric and planeto-centric RFs.

2.1 An Isolated One-Body Problem.

The solution for the isolated one-body problem in the WFSMA may be obtained from the lin-

earized gravitational field equations of a particular theory under study. As we mentioned above,

a perturbative gravitational field h(_ in this case is characterized by the deviation of the density

of the general Riemmanian metric tensor v/-_g mn from the background pseudo-Euclidian space-

time _[rnn, which is considered to be a zeroeth order 3 approximation for the series of successive

iterations: x/-_g ran- x/-_"/mn = h(_, or equivalently,

gmn = 'Ymn "I- h (°) (2.3)
Tlln"

The search for the solution of the field equations is performed within a barycentric inertial RF0
_(0) (zp_(x p) that is singled out by the Fock-Sommerfeld boundary conditions imposed on the ,omn_ j

and Okh(Om)(zp) (Fock, 1955; Damour, 1987; Will, 1993):

lim [h(m°)(xP); r(O---_-h (°) (x p_ _rh(m°)(xP))] 0, (2.4)r--*oo k OxO mn _ ) "_- "-_

X 0 r 2
-{- r _ const_ _- --'y_VvJX_XV.

3For most non-radiative problems in solar system dynamics, this tensor usually is taken to be a Minkowski

metric (Damour, 1983, 1987; Will, 1993).
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In orderto accumulatethe featuresof manymodernmetrictheoriesof gravity in onetheoret-
ical scheme,to createa versatilemechanismto plan gravitationalexperiments,and to analyze
the data obtained,Nordtvedtand Will haveproposeda parameterizedpost-Newtonian(PPN)
formalism(Nordtvedt,1968a,b;Will, 1971;Will & Nordtvedt,1972).This formalismallowsone
to describethe motion of celestialbodiesfor a wideclassof metric theoriesof gravitywithin a
commonframework.Thegravitationalfield in thePPNformalismis presumedto begenerated
bysomeisolateddistributionof matterthat is takento beanidealfluid, (2.1). This field is rep-
resentedby the sumof gravitationalpotentialswith arbitrary coefficients:the PPNparameters.
Thetwo-parameterformof this tensorin four dimensionsmaybewritten asfollows:

h(0°) = -2U + 2(/3 - _-)U 2 + 2_ + 2T(_2 -- (I)w) + (1 -- 2v)X,00 +O(C-6), (2.5a)

h(0) = + 2 - - + +  -)wo + 0(c-5), (2.5b)

h(°)= 2e Z( - r)U - 2fUzz + 0(c-4), (2.5c)af_

where ")'rnn is the Minkowski metric. 4 The generalized gravitational potentials are given in Ap-

pendix A.

Besides the two Eddington parameters (%/3), eq.(2.5) contains two other parameters, u and

_-. The parameter u reflects the specific choice of gauge conditions. For the standard PPN

gauge, it is given as u = ½, but for harmonic gauge conditions, one should choose u = 0.

The parameter T describes a possible pre-existing anisotropy of space-time and corresponds to

different spatial coordinates that may be chosen for modelling the experimental situation. For

example, the case of _- = 0 corresponds to harmonic coordinates, while T = 1 corresponds to the

standard (Schwarzschild) coordinates. A particular metric theory of gravity in this framework

with a specific coordinate gauge (u, 7) may then be characterized by means of two of the above-

mentioned PPN parameters (_/,/3), which are uniquely prescribed for each particular theory under

study. In the standard PPN gauge (i.e., in the case when u = ½,_- = 0), these parameters

have clear physical meaning. The parameter _f represents the measure of the curvature of the

space-time created by the unit rest mass; the parameter /3 is the measure of the non-linearity

of the law of superposition of the gravitational fields in the theory of gravity (or the measure

of the metricity). Note that general relativity, when analyzed in standard PPN gauge, gives
l+w

_/ = /3 = 1, whereas, for the Brans-Dicke theory, one has [3 = 1, V = 2--;J, where w is an
unspecified dimensionless parameter of the theory.

The properties of an isolated one-body solution are well known. It has been shown (Lee et

al., 1974; Ni & Zimmerman, 1978; Will, 1993) that for an isolated distribution of matter in

the WFSMA there exist a set of inertial RFs and ten integrals of motion corresponding to ten

conservation laws. Therefore, it is possible to consistently define the multipole moments char-

acterizing the body under study. For practical purposes, one chooses the inertial RF located in

the center of mass of an isolated distribution of matter. By performing a power expansion of the

potentials in terms of spherical harmonics, one may obtain the post-Newtonian set of 'canonical'

4Do not mix the post-Newtonian parameter ? and the Minkowski metric tensor "Tra,_. As necessary, we will

distinguish the determinant det[['r,,_,_[[ with the special symbol.
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I (L} and current ¢,{L} multipole moments)parameters (such as unperturbed irreducible mass A(0) _A(0)
generated by the inertially moving extended self-gravitating body (A) under consideration:

zA{ } [fA.3 ,(0) _--- t_ ,_A_,A k,_A2_ A j ,
s{L} [ J3 , '_£Oa_ rp_ '#2 'Pl]STF
A(o)= [ Z_]A a ZAZA_A _ZA)ZA --.ZAJ , (2.6a)

where [_n is the components of the symmetric density of the energy-momentum tensor of matter

and gravitational field taken jointly. As a result, the corresponding gravitational field h(_ may
be uniquely represented in the external domain as a functional of the set of these moments.

Schematically this may be expressed as

rnn = .7-mnri{L} ¢{L} 1
h(o)A [ A(0)' _'A(0)J' (2.6b)

where the functional dependence, in general, includes a non-local time dependence on the 'past'

history 5 of the moments (Blanchet et al., 1995). However, by assuming that the internal processes

in the body are adiabatic, one may neglect this non-local evolution. As a result, an external

observer may uniquely establish the gravitational field of this body through determination of

these multipole moments, for example, by studying the geodesic motion of the test particles in

orbit around this distribution of matter (Misner et al., 1973).

2.2 The Limitations of the Standard PPN Formalism.

It turns out that the generalization of the results obtained for the one-body problem into a

solution of the problem of motion of an arbitrary N-body system is not quite straightforward.

Thus, the studies of post-Newtonian motion of extended bodies in PPN formalism begin by

expanding the generalized gravitational potentials in the metric tensor and the corresponding

eq.m of these bodies with respect to deviation from Newtonian motion. As a final result, one

needs to have the generalization of expression (2.6b) for the case of the N-body problem. However,

this generalization is usually done by using Galilean coordinate transformations similar to those

of (1.2) from the Newtonian mechanics (Fock, 1955; Will, 1993):

x0 yO+O(c-2), x 0= =  B0( B) + + O(c-2), (2.7)

where Y_o is the Newtonian barycentric radius vector of the body (B) under study. It was
noted that this accuracy is enough for the post-Newtonian terms in these eq.m. (Brumberg,

1972), but it is insufficient to account for the necessary special relativistic and gravitational

corrections. Thus, as we know, if the body is spherically symmetric in the proper RF, in the other

frame it will experience both the Lorentzian contraction (linked to the relative velocity between

these frames) in the direction of velocity between these RFs and gravitational compression (or

_Einsteinian' contraction, which is linked with the external gravity) (Kopejkin, 1987). However,

transformations (2.7) ignored completely these Lorentzian and gravitational contractions, as

well as the relativistic geodetic precession and effects of the curvature of space-time. All these

kinematic and dynamic effects appear in the expressions for the metric tensor and eq.m. of the

local problem, where they are shown as terms depending on both (i) the 'absolute' velocity of the

body's center of inertia with respect to the barycentric inertial RF0 and (ii) the absolute value

and first spatial derivative of the external gravitational potential U ext. As a result, the relativistic

eq.m. of the local problem differ essentially from the Newtonian eq.m., which do not depend on

the 'absolute' velocity and contain only the second spatial derivative of U ext, i.e., the tidal terms.

SGravitational radiation problems are not within the scope of the present report and, hence, the set of multipole

moments, (2.6a), are used for both tensor and scalar-tensor theories.
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Thecorrectwayto describethesephenomenais to usetheappropriatecoordinatetransformations
betweenthedifferentRFsin theWFSMA.Thesetransformationsshouldgeneralizetheexpressions
of the Poincar@groupof motion, (1.7),for the problemof motionof thegravitationallybounded
N-extended-bodysystem. However,the standardPPNformalismwas formulatedoncein the
inertial RF and thereis no wayto constructsucha transformationfor the quasi-inertialproper
framesof the bodies.This lackof transformationbetweenthe differentRFsis amajor limitation
of this otherwiseveryusefulmethod.

Nevertheless,by putting someadditionalrestrictionson the shapeand internal structureof
the bodies,one may generalizethe resultspresentedabovein the caseof an N-bodysystem.
The assumptionthat the bodiespossessonly the lowestmultipolemassmomentsconsiderably
simplifiesthe problem. It hasbeenshown(Fock,1955;Lee,Lightmann & Ni, 1974;Ni &
Zimmerman,1978)that for an isolateddistributionof matter in the WFSMAit is possibleto
consistentlydefinethe lowestconservedmultipolemoments,suchasthe total rest massof the
system,2140;its centerof mass,z_; the momentum, p_; and the total angular momentum, S_ _,

of the system. The definitions for the mass M0 and coordinates of the center of mass of the

body z_ in any inertial RF are given by the following formulae (for a more detailed analysis see

Damour (1983) and Will (1993) and references therein):

/ 1/MO = d3x ' t°°(xtP), z_(t) -= _ d3x ' t°°(x'P)x'a, (2.8a)

where the energy density t°°(xlP) of the matter and the gravitational field is given by

1 1 O(c_4)],t°°(xP) : _[1 +c-2(H- -_U- -_v_,v") + (2.Sb)

with _ being the conserved mass density. In particular, the center of mass z_ moves in space with

a constant velocity along a straight line: z_(t) = p_ • t + k _, where the constants p_ = dzg/dt

and k_ are the body's momentum and center of inertia, respectively. Moreover, it was shown by
Chandrasekhar & Contopulos (1967) that, in the case of point-like massive particles, the form

of metric tensor (2.5) and the corresponding EIH eq.m. are invariant under coordinate transfor-

mations (1.12). This form invariancy justifies the word 'inertial' for harmonic RFs constructed

under the Fock-Sommerfeld boundary conditions (2.3). One may choose from the set of inertial

RFs the barycentric inertial RF0 for such a system. In this frame, the functions zg must equal

zero for any moment of time. This condition may be satisfied by applying the post-Galilean

transformations (1.12) to the metric (2.5), where the constant velocity and displacement of the

origin should be selected in a such a way that p_ and ka equal zero (for details, see Kopejkin,

1988; Will, 1993). The solar system barycentric RF0, constructed using general relativity for

the system of point-like massive particles, is widely in use in modern astronomical practice, for

exa.mple, in the construction of planet ephemerides (Moyer, 1971; Lestrade and Chapront-Touz@,

1982; Newhall et al., 1983; Akim et al., 1986; Standish, 1995). Moreover, the coordinate time of

the solar system barycentric (harmonic) RF0 must be considered as the TDB time scale, which

is extensively used in modern astronomical practice (Fukushima, 1995a).

2.2.1 The Simplified Lagrangian Function of an Isolated N-Body System.

In order to extract the information about the gravitational field of an N-body system, one should

study the motion of light rays and test bodies in this gravitational environment. However, the

standard methods of the PPN formalism (Will, 1993) do not enable us to develop the correct

3O



theoreticalmodel of the astrophysicalmeasurementswith the accuracynecessaryto identify
the multipolar structureof the gravitationalfieldsof the bodies. In particular, it wasnoted
that taking into accountthe presenceof any non-vanishinginternalmultipole momentsof an
extendedbodysignificantlychangesits equationsof motiondueto thecouplingof theseintrinsic
multipolemomentsof the bodyto thesurroundinggravitationalfield.Forexample,for aneutral
monopoletest particle,the externalgravitationalfield completelydefinesthe feducialgeodesic
world linethat this testbody follows(Fock,1955;Will, 1993).Ontheotherhand,theequations
of motionfor spinningbodiescontainadditionaltermsdueto thecouplingof the body'sspinto
the externalgravity throughthe Riemanncurvaturetensor(Papapertou,1948,1951;Barker&
O'Connel,1975).

An 'absolute'limit of the PPNformalismtakesinto accountthe lowestmultipole moments
of the bodiesonly, suchasthe rest massmA of the body (A), its intrinsic spin moment S_ z,

and the quadrupole moment I_ z. The general solution with such assumptions is also known (see

Damour, 1986, 1987 and references therein, and Turyshev, 1990). In order to analyze the motion

of bodies in the solar system barycentric RF0, one may obtain the restricted Lagrangian function

LN describing the motion of N self-gravitating bodies, which may be presented as follows:

-- - )-zzny _ --_--VA_VA" _VA,VA _ mAmB
A A BCA tAB

+ (3 + -y - 4fl)EA--

-_- + })_ -(_ + 1)_]s_ _+ _AB_A_-_--/
tAB ]

1 N N mB 2

+ E -
A B=_A

N N N [nAB), _n), n_A ) 1 1 N--7- _ _ _ rnAmsmc -- + + _ mAO(C-6), (2.9)
A B#AC#A,B [2r_B _ BC rABrAC A

where m A is the isolated rest mass of a body (A), the vector r_ is the barycentric radius vector

of this body, the vector r_B = r_ - r_ is the vector directed from body (A) to body (B), and the

vector n_4 B = r_4B/rAB is the usual notation for the unit vector along this direction. It should be

noted that expression (2.9) does not depend on parameter v, which confirms that this parameter

is the gauge parameter only. The tensor I_ v is the STF (Thorne, 1980) tensor of the reduced

quadrupole moment of body (A), defined as

1 3,_ ,p (3z_z_ _/_vZ_A_Z_)I_ - 2_A /A d _APA(Z_) -- • (2.1o)

The tensor S_" is the body's reduced intrinsic STF spin moment which is given as:

d z_p_(z_)[___zA __z_], (2.11)

where v_ is the velocity of the intrinsic motion of matter in the body (A). Finally, the quantity

EA is the body's gravitational binding energy:

1 f d3z, d3z. pAI ZA)PA[Z A )EA (2.12)
j A A ['ZT_ -- _-7/'_, •2mA A ]_A --_AI
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Let us note that the Lagrangianfunctionis obtainedwith the conditionthat, in the proper
RF of eachbody (A) in the system,the body'sdipolemassmomentsvanish:

x{._}-=-_ = ]_ -AoA_-A._ =0, (2.13a)

where _A° is defined by the following expression:

÷ ÷
Expression (2.13a), together with the condition rh_ = 0, may be considered as an indirect

post-Newtonian definition of the proper RFA in the PPN formalism.

2.2.2 The Simplified Barycentric Equations of Motion.

In this subsection, we will present the barycentric equations of motion that follow from the

Lagrangian function (2.9). The assumption that bodies in the system possess the lowest intrinsic

multipole moments enables us to obtain only the corresponding simplified equations of motion.

Thus, with the help of the expressions (2.9), for an arbitrary body (A), these equations will read
as follows:

M B ^c_ mB [.A_ B + B_4..___BB + C_B

BOA B#A tab

n_4B
((2z+ 2_- 27+ 1)mA+ (2z+ 2_- 2_)m_)]+

tAB

+ Z Z _B_cV_Bc+ o(_-_), (2.14)
B#A COA,B

where, in order to account for the influence of the gravitational binding energy EB, we have

introduced the passive gravitational rest mass MB (Nordtvedt, 1968b; Will, 1993) as follows

M_ = _B(1 + (3+ _- 4_)EB+ O(c-_)). (2.15)

The unit vector nAB must also be corrected using the gravitational binding energy and the tensor

of the quazirupole moment I_ _ of the body (A) under question:

I_ _ , I_ #
n_4B=n_AB(I+(3+7--4#)EA+5nABAnAB_-2---)+'AB - 2nABZ -- +O(c-4).r2AB (2.16)

The term A_B in expression (2.14) is the orbital term, which is given as follows:

o ( - )=_AB_AB__ - (2_ 2_+ 1)_B +

3_ n . ), _2"_+_B (_- (_+ 1+ _)_B_B- 3_(_B_vAB_)_- _ ,_B_,,B_).

The spin-orbital term/_,s has the form

(2.17)
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3 1 a_
1_4B = (_ + 2")')VABA(S_49_+ S_ "_) + -_VA)_(SA -- S_;_)q-

+3(1 + 27)nAB_VAB_[n_AB(S,_;_ + S_ _) --n_B(S_AA + S_BA)]+

3
'-

The term C_B is caused by the oblateness of the bodies in the system:

e A/_
C_ B = 2nABBI_ z + 5nABnAB_nAB_I B •

(2.18)

(2.19)

And, finally, the contribution T_a_bcto the equations of motion (2.14) of body (A) (caused by the

interaction of the other planets (B#A, C#A,B) with each other) is presented as

= n_s [(1_ _/)_ac]+z , sc L 2Z)- c - +

#c_A nAB)_ A_4_C 1 A_c_ ,_) nBC a+7_3A---_B(nbc;_+nca;O+_-----+ 1+2_-) nsc_ +2(1+ ' -- , (2.20)

;_ _ and _'_ 3n_ABn_AB the projecting and the polarizingwhere A_ = _7;'v + nABnAB "PAB = 77_'_ + are

operators, respectively.

The metric tensor (2.5), the Lagrangian function (2.9), and the equations of motion (2.14)-

(2.20) define the behavior of the celestial bodies in the post-Newtonian approximation in the

PPN formalism. These equations may be simplified considerably by taking into account that

the leading contribution to these equations is the solar gravitational field. With such an ap-

proximation, they are used to produce the numerical codes in relativistic orbit determination

formalisms for planets and satellites (Moyer, 1981; Huang et al., 1990; Ries et al., 1991; Standish

et al., 1992) as well as to analyze the gravitational experiments in the solar system (Will, 1993;

Pitjeva, 1993; Anderson et al., 1996). It should be noted here that in the present numerical

algorithms for celestial mechanics problems (Moyer, 1971; Moyer, 1981; Brumberg, 1991; Stan-

dish et al., 1992; Will, 1993), the bodies in the solar system are assumed to possess the lowest

post-Newtonian mass moments only, namely, the rest masses and the quadrupole moments. The

corresponding barycentric inertial RF0 defined in the harmonic coordinates for general relativity

(7 = _ = 1; u = _- = 0) has been adopted for the fundamental planetary and lunar ephemerides

(Newhall et al., 1983; Standish et al., 1992).

However, if one attempts to describe the global dynamics of the system of N arbitrarily shaped

extended bodies, one will discover that even in the WFSMA this solution will not be possible with-

out an appropriate description of the gravitational environment in the immediate vicinity of the

bodies (Kopejkin, 1988; DSX, 1991). Thus, one needs to present the post-Newtonian definition

for the proper intrinsic multipole moments for the bodies in order to describe their interaction

with the surrounding gravitational field as well as to obtain the corresponding corrections to

the laws of motion and precession of the extended bodies in this system. This could be done

correctly only by using the theory of the quasi-inertial proper RF with well-defined dynamic and

kinematic properties. In the next section, we will discuss a new perturbative method for finding

the solution for the relativistic N-extended body problem and will formulate the corresponding

theory of relativistic astronomical RFs in curved space-time.
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3 WFSMA for an Isolated Astronomical N-Body System.

In this section, we will discuss the principles of a new iterative method for generating the solutions

to an arbitrary N-body gravitational problem in the WFSMA. This formalism will be based upon

the construction of proper RFs in the vicinities of each body in the system. Such frames are

defined in the gravitational domain, dB, occupied by a particular body (B). One may expect

that, in the immediate vicinity of this body, its proper gravitational field will dominate, while

the existence of the external gravity will manifest itself in the form of the tidal interaction only.

Therefore, in the case of the WFSMA in the closest proximity to the body under study, this

proper RF should resemble the properties of an inertia] frame, and the solution for an isolated

one-body problem h(°m)s should adequately represent the physical situation. However, if one

decides to perform a physical experiment at some distance from the world tube of the body,

one should consider the existence of the external gravity as well. This is true because external

gravity plays a more significant role at large distances from the body, and this should be taken

into account. As we noticed earlier in Section 1, the physically adequate description of this

nature of gravity could be made in the well-justified proper RF only. Let us mention that the

dynamical properties of the inertial frames presently are well justified and correctly modelled

both physically and mathematically. In particular, the properties of the barycentric inertial RF0

are based upon the properties of an N-body generalization of an unperturbed isolated one-body

solution of the gravitational field equations in an inertial RF given by (2.5). These properties

are well established and widely in use in modern astronomical practice (Moyer, 1971; Moyer,

1981; Brumberg, 1991; Will, 1993). However, as we discussed earlier, this N-body generalization

is based on the assumption that the bodies in the system possess the lowest intrinsic mass

and current multipoles only. In order to account for the influence of higher-order multipoles,

the coordinate transformations to the proper RF are necessary. This proper RF should take

into account both Lorentzian and Einsteinian features of the motion of extended bodies in the

external gravitational field. In the next subsection, we will concentrate on formulating the basic

principles of a new method for constructing such transformations for a wide class of metric

theories of gravity.

3.1 The General Form of the N-Body Solution.

In order to construct a general solution for the N-body problem in a metric theory of gravity,

let us make a few assumptions. First of all, let us assume that there exists a background space-

time _rnn with the dynamic and cosmological properties discussed in the Section 1. Note that

these properties do not forbid the existence of incoming and outgoing gravitational radiation.

We will discuss this case further. We shall assume that the solution of the gravitational field

equations h_ ) for an isolated unperturbed distribution of matter is known and is given by

relations (2.5). We further assume that for each body (B) in the system, one may establish a

unique correspondence to each such solution: (B) ¢=_ h(°m)B.

With these assumptions, we may construct the total solution of the global problem gmn in an

arbitrary RF as a formal tensorial sum of the background space-time metric "�ran, the unperturbed

solutions ,_(0)B_mnplus the gravitational interaction term "-mnbmt• Thus, in the coordinates x p - (x °,, x _')

of the barycentric inertial RF0, one may search for the desired total solution in the following form:
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gmn(x p) = _/mn(Xp) + hmn(x p) =

=  mn(XP)+
B=-I

where the coordinate transformation functions y_ = yqs(x p) are yet to be determined.
interaction term h int will be discussed below.

(3.1)

The

In order to describe the matter distribution, let us assume that the corresponding Lagrangian

function L_ t may be given as
N

t : E +
B

where L_ t is the Lagrangian describing interaction between the bodies. Then, the total energy-

momentum tensor of matter in the system may be presented as follows:

=2 - +
B

(3.2)

For the case of compact and well separated bodies, we may take into account that the mutual

gravitational interaction between the bodies affects their distribution of matter through the met-
ric tensor only. Therefore we can neglect the second term in the expression above 6. Then without

any loss of accuracy, we obtain the total energy-momentum tensor of the matter distribution in

the system in the following form:

(3.3)

where Ts is the energy-momentum tensor 7 of a body (B) as seen by a co-moving observer.

The unperturbed solution h(m°)B for the field equations in the WFSMA is presented in the

form of the double power series with respect to two small scalar parameters: the gravitational

coupling constant G and the orders of c -1. It is clear that a similar set of small parameters

may be used in order to construct an iterative N-body solution at least at the post-Newtonian

level in the WFSMA. This means that all the functions and fields involved in the perturbation

scheme (such as the interaction term ..hintmn,the coordinate transformation functions yq = yq (xP),

the energy-momentum tensor Trash, etc.) are also power expanded with respect to these small

6It is also true, if one recalls the result, that the interaction between the gravitational fields in the 1.5 post-

Newtonian physics will appear in the g00 component of the metric tensor only and will have an O(c -4) order of

magnitude.

TAs a partial result of representation (3.3), one can see that the Newtonian mass density ps of a particular body

(B) is defined in the sense of a three-dimensional Dirac delta function. Thus, in the body's proper compact-support

volume, one will have pB = msb(y_), so that

/a _3 t ] tpx
a yAPB[YA) = mB6AB,

where 5AS is the three-dimensional Kronekker symbol (5 A = 5AS; 5AS = 1 for A = B and 0 for A # B). Then in

any RFA, the total density _ of the whole N body system will be given by the expression _(y_) = _g ps(y_A)-

This representation allows one to distinguish between the local and integral descriptions of the physical processes

and, hence, provides correct relativistic treatment of the problem of motion of an astronomical N-body system.
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scalarparameters.At this point, the actualform of the energy-momentumtensorTmn is not

of great importance. We prefer to keep this arbitrariness in our further calculations. The only

restriction we will apply to the possible form of this tensor is based on the physical expectations;

we will limit ourselves to such tensors which have the components of the following orders: Too ---

0(1), Toe "" O(c-t),T,_ '_ 0(c-2).

One may establish the properties of solution (3.1) with respect to an arbitrary coordinate

transformation simply by applying the basic rules of tensorial coordinate transformations. In

particular, in the coordinates yPA(Za) -- (yO, y_) of an arbitrary proper RFA, this tensor will take

the following form:

O:r.k Ox l
+ =

_ int s pa,:k o:,:' + h,,, (yA)))+
0 mYA OY?4

(O)A p Oy_ Oy_ h(O)Brys ry_ (3.4)+hmn (YA)+ Om kz A."
B#A YA Oy_

The expression for Tmn(yPA) could be obtained analogously to that given by equations (3.3). To

complete the formulation of the perturbative scheme, we need to introduce the procedure for

constructing the solutions for the various unknown functions entering expressions (3.1)-(3.4),

including the four functions of the coordinate transformations y_ = yqB(yPA) and the interaction
term h int

" "_Ttn *

We will construct the four functions of the coordinate transformations by applying the rela-

tivistic theory of celestial RFs in a curved space-time. To do this, we will use the most general

form of the post-Newtonian non-rotating coordinate transformation between the barycentrical

(inertial) coordinates (x p) and the bodycentrical (quasi-inertial) coordinates (y_):

x ° = y°A + c-2KA(yOA, Y_A)+ c-4LA(yOA, YCA)+ O(c-6)yoA, (3.5a)

a 0
x_ = Y_ + YAo(YA) + c-2Q_ (yOA,Y_A)+ O(C-4)Y_, (3.5b)

where a 0YAo(YA) is the Newtonian radius vector of body (A). Transformations (3.5) should com-
plement the post-Galilean coordinate transformations (1.12) in the case of the curved space-time

generated by an arbitrary N-body system. Note that transformations (3.5) are presented as be-

ing parametrized by the set of three unknown functions, KA, LA, and Q_. This is an example
of that which will be referred to as the KLQ paxameterization for the WFSMA. The functions

KA, LA, and Q_ are expected to contain the information about the specific properties of the

quasi-inertial RFA associated with the body (A). The form of these functions will be determined

by the iterative procedure for constructing the quasi-inertial proper RFA.

The way to construct the solution for the interaction term "-rnnhintis quite straightforward: It

is sufficient to require that the metric tensor in the form of eq.(3.1) or (3.4) will be the explicit

solution of the gravitational field equations in the corresponding RF. Note that the second term

in eq.(3.1) is linear with respect to the unperturbed solutions h(_ )B and that the transformation

functions between the different RFs are determined by means of the external gravitational field in

their origins. Only the interaction term should contain the information about the dynamic non-

linearity of the gravitational interaction. The form of this term should depend on the physical
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featuresof the RFschosenfor the analysis.It shouldbenotedthat thesearchfor thesolutionin
the barycentricRF0is physicallyandmathematicallymoreappropriatethenin the bodycentric
one.Moreover,to datenoanalysishasbeenmadeto proposeacovariantboundaryconditionfor
the caseof the non-inertialRFratherthen the 'classical'Fock-Sommerfeldone.It isknownthat
theseconditionsareappliedasymptoticallyto the entiregravitationalfield from the systemat
the infinitive distancefrom the latter andarevalid for the isolateddistributionof matter. This
meansthat makinguseof the Fock-Sommerfeldboundaryconditions(Brumberg& Kopejkin,
1988a;DSX, 1991-1994)in a properRF is mathematicallyweaklyfoundedin orderto find the
generalsolutionof the field equationsin this frame. Basedon this conclusion,wewill perform
thesearchfor the hint in the coordinatesof the barycentricinertial RF0.

By taking into accountthat all the functionsand fieldsin expressions(3.1)-(3.5)arepre-
sentedin the form of a powerexpansionwith respectto the set of smallparameters,onemay
organizean iterative procedurein orderto obtainthegeneralsolutionfor the problem.The two
principlestepsof this procedurearethe supplementaryconditionsnecessaryfor the solutionof
thegravitationalfieldequations,whichmaybeexpressedby both the covariantgaugeconditions
andthe boundaryconditions.

In the proposedformalism,theseconditionsaretakento beasfollows:

The covariant gauge conditions. The solutions of the field equations are assumed to satisfy

the covariant harmonical de Donder gauge, which, for an arbitrary RFB, may be written as

follows:

=0, (3.6)

where :DnB is the covariant derivative with respect to the metric "yBn(_B ) of the inertial Riemann-
Rk Bfiat (nml(_'_n(_B)) = 0) space-time in these coordinates, s For most of the interesting practical

problems in the WFSMA, this metric may be represented in quasi-Cartesian coordinates as the

sum of two tensors, the Minkowski metric "7(m°) and the field of inertia ¢mn :

Oxk Oxl s -

= = + (3.7)

Note that the term Cmn appears to be parameterized by the coordinate transformation functions

KA, LA, and Q_ defined in eqs.(3.5); thus, we have Cmn(_A) = Cmn[KA, LA, Q_], a formulation

that will be referred to as the KLQ parameterization in the WFSMA.

The advantage of using these gauge conditions is that they allow us to construct the solutions

to the field equations in a unique way without applying the technique of the, so-called, 'external

multipole moments' (Brumberg & Kopejkin, 1988a; DSX, 1991). The conditions of eqs.(3.6) do

not fix the harmonic RF in a unique way and, in definition of coordinates of this frame, some
tparbitrariness may still exist. Indeed, the coordinate transformation YB = YPB+ _PB(YqB)with

g (yPB)7)mT)n _PB(yqB) = 0 does not violate the chosenthe function _ satisfies the equation mn B B
conditions (3.6). In all the particular cases, the remaining freedom of the harmonic RF might be

Sin Cartesian coordinates of the inertial Galilean RF0, the flat metric "/_,_ can be chosen as "r(m°)n=
diag(1,-1, -1,-1), so that the Christoffel symbols Fk_°) = 0 all vanish and conditions (3.6) take the more familiar
form of the harmonic conditions

0g Bgs (yB =0,

which are equivalent to setting u -- r = 0 in eqs.(2.5).
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fixedby choosingthe specificCSassociatedwith the properRFsfor describingthe dynamicsof
the N bodiesin thesystem.9

The boundary conditions. The search for the general solution for ,nt _p_hmn(X } is performed in

a barycentric inertial RF0, which is singled out by the Fock-Sommerfeld boundary conditions

imposed on the hmn and 0khmn:

r--*oo OX

r

$ + - = const, (3.8a)
C

where r 2 = -'_(_ x_'x _. Note that conditions (3.8) must be satisfied along all past Minkowski

light cones. Thus, these conditions define the asymptotically Minkowskian space-time in a weak

sense, consistent with the absence of any flux of gravitational radiation falling on the system

from an external universe (Damour, 1983, 1986). Moreover, one assumes that there exists such

a quantity h_,_ x = const (for the solar system, this constant is of the order of _. 10 -5) for which
the condition

hmn(X p) < h max (3.85)

should be satisfied for each point (_) inside the system: I_1 < Lb. Note that any distribution

of matter is considered isolated if conditions (3.8) are fulfilled in any inertial RF (Damour, 1983;

Kopejkin, 1987, 1988).

By making use of conditions (3.8), we have an opportunity to determine the interaction term
int _p

hmn(X } in a unique way while solving the gravitational field equations of a metric theory of

gravity.

3.2 The Post-Newtonian KLQ Parameterization.

It is well known that for practical description of the translational and rotational motions of

the N-body system, one should introduce at least (N + 1) different RFs (Brumberg _ Kopejkin,

1988; DSX, 1991). It is desirable that one of these frames be the inertial barycentric (RF0)

with coordinates denoted as (x p) - (x °, x_'). The origin of these coordinates is located at the

center of the field of the entire N-body system. This particular RF will be used to describe

the global dynamics of the whole system. The other N frames should be convenient for the

description of the local gravitational environment in the immediate vicinity of the particular

body (B) under consideration. The origins of corresponding coordinate grids, (_) - (yO,y_),

should be associated with the centers of the local fields of the interacting bodies of interest.

In this subsection, we will establish the general relationships describing the straight, inverse,

and mutual coordinate transformations between the different quasi-inertial RFs. We will show

that, in the WFSMA, all these different types of coordinate transformations may be parametrized

by the same set of functions, KA, LA, and Q_. As a result, we will reconstruct in the general form

of the post-Newtonian non-linear group of motion the background pseudo-Euclidean space-time
for the WFSMA.

9Or equivalently, by choosing some specific form of gm,_ (Thorne, 1980; Hellings, 1986; Fukushima, 1988) and

the internal and 'external' moments in a vacuum power expansion of the metric tensor gmn in a set of multipoles

(Kopejkin, 1988; DSX, 1991).
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3.2.1 The Properties of the Coordinate Transformations in the WFSMA.

As we mentioned above, in order to construct the relativistic theory of the RFs in celestial me-

chanics, one should not only solve the global and local problems, but also one should establish the

rules of the coordinate transformations between these solutions that belong to the different RFs.

To do this, let us discuss the expected physical and mathematical properties of the coordinate

transformations given by expressions (3.5) in the form

x o = yO + c-2KA(yO, yEA)+ c-4LA(yO, y_A) + O(C-6)yO,

= + y 0(y°) + + O(c-4)y 4

These coordinates are expected to cover space-time in the immediate vicinity of the body

under consideration. It is clear that such a mapping of the space-time may be performed by both

the barycentric and bodycentric coordinates. This suggests that these coordinate transformations

should be reversible. The functions KA, LA, and Q_ should contain the information about the

specific physical properties of the RF chosen for analysis. It is generally believed that, in order

to produce the transformations to the physically justified proper RF, the following properties of
these functions should be satisfied:

(i).

(ii).

The functions KA, LA, and Q_ should be completely defined by means of the external

gravitational field at the origin of the coordinate system of the proper RF A of body (A)

for which the physically adequate proper RF is constructed. These functions should not

contain any terms caused by the pure gravitational field of body (A) besides those with the

coupling of the internal multipole moments of body (A) to the external gravitation.

In order to obtain reversible transformations, the transformation functions should be ho-

mogeneous and infinitely differentiable. Then, based on assumptions about the properties

of a well-justified proper RF (given in the Section 1), the functions KA, LA, and Q_ should

admit an additional Taylor expansion in power series of the spatial coordinate y_. For

convenience, these series may originate on the world line of the center of the local field in

the vicinity of body (A), so that these functions could be expressed as follows:

1 0
= E (3.9)

l

where function fA(Y°A, Y_A) is any function from KA, LA, or Q_. As a result, the second

derivatives taken from these functions will not depend on the order of the derivative's

application, namely,

0 0 ]fA(yO, y_A)=O, (3.10)

where the brackets are the usual notation for the commutator: [a, b] = ab - ba.

(iii). At the limit when gravitation is absent (G --* 0), the theory becomes Poincar_-invariant

and transformations (3.5) should coincide with those of Poincar_ (between two frames in

uniform relative motion with a velocity g plus transition of origin and arbitrary rotation),

which are given by eqs.(1.7).
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(iv).

(v).

At theotherlimit, whenN_ 1,andtheproblemmaybedescribedbytheone-bodygravita-
tional fieldsolution(2.5),thetransformationsshouldcoincidewith that of Chandrasekhar-
Contopulos,(1.12),for the uniformmotionbetweenthetwo RFsin the isolatedone-body
problem.

Forthegravitationaltheories,whosefoundationsarebasedupontheEquivalencePrinciple,
thephysicalpropertiesof constructedRFsshouldbegenericfor all thebodiesin thesystem.
Otherwise,the possibleviolationof this principle(whichmaybe inducedby the possible
dependenceof the gravitationalcouplingon the shape/size/compositionof the bodies)
shouldbe takeninto accountwhilethe properRFis constructed.

3.2.2 The Inverse Transformations.

The transformations given by eq. (3.5) transform space and time coordinates from the barycentric

space-time RF (x p) to space and time coordinates in the proper RFA (_A)" However, in practice

one needs to make the comparison between the proper time and position in different RFs and,

hence, it is necessary to have the inverse transformations to those of eq.(3.5) and the mutual

transformations between the two proper quasi-inertial frames as well. The existence of the

small parameters and the assumptions in (3.9) and (3.10) make it possible to generate these

transformations in a general form as well as to construct the group of motion for the problems in

the WFSMA. Thus, the general condition of the inreversibility of transformations (3.5) is given
as usual:

det [[Oxm
c3y_ [[ _ 0. (3.11a)

Expressions (B5) from Appendix B enable us to present this condition in an arbitrary RF obtained
with the WFSMA as follows:

det 1[ [[ -- 1 + _.oKA(YA, YA)+
OYA

A 0 0 a a 0 u

+VAo(YA)VAo_(YA) + _y_QA(YA, YA)+ O(c-4) _ O(C-4)• (3.11b)

Note that thisconditionissatisfiedformost ofthe problems in modern celestialmechanics. A

similaranalysishas been made by Brumberg &:Kopejkin (1989)forthe dynamics ofthe planets

in the solarsystem. Itwas shown thatthe determinant vanishesat the distancer* ...c2/[aE[,'.

7.5•102°cm from the centerof mass of the Earth. From thisitfollowsthat,in spiteof an

initial construction of a geocentric RF in the region lying inside the lunar orbit, it is possible to

smoothly (without intersecting) prolongate the spatial coordinate axes of the geocentric RF for

much larger distances beyond the orbit of Pluto.

We will search for the post-Newtonian transformations that will be inversed to those of eq.(3.5)

in the following form:

yO = x 0 + c-2/_A(Z0, Xe) q_ C-4£A(xO, x e) ...[_ O(C-6)X0 (3.12a)

y_ : 2:c_ -- y_o(X O) "b C-20._(X 0, X e) "b (-.0(C--4)Xa, (3.12b)

where the functions/(A,LA, and O_ are unknown at the moment. One can show that in

the WFSMA, thesefunctionsmay be expressedinterms offunctionsKA, LA, and Q_ writtenin
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coordinates (x v) of the barycentric RF0. In order to find the expressions for/_A, LA, and Q,_4, let

us substitute relations (3.5) into eqs.(3.12) and then expand the obtained relations with respect
to the small parameters: G _ c -2. Thus, for the spatial components we will obtain

_ c_ 0 0xo=x _ y_o(X°)+ c-2Q_(x°,x_)+ _A0(yA(_,_))+

(3.13)

This equation enables us to find the expression for Q,_4(x°,x _) in terms of functions Q_

and /_A- By expressing the arguments of the transformation functions Ya4o(yOA(xO, xa)) and

Q_ (yO (x 0, x a), y_ (z 0, x _)) in terms of coordinates (x v) and expanding the obtained relations in

the power series of the small parameter c-1, we will get

(3.14a)

= y_0(_°) + v%(x°) -c-2Ra(x°, x_)+ O(c-4)_" , (3.14b)

where

= +

Then, by substituting eqs.(3.14) into eqs.(3.13), we will obtain the expression for the function

Q_(=°,x_):

Q_(xO, x_)=-Q_4(xO, xa-y_4o(X°)) -V_4o(X°).kA(X°,Xe)+O(c-a)x a. (3.15)

By repeating this procedure for the temporal components of transformations (3.12), we may

obtain the expressions for functions/_A(X °, x e) and ].,A(X °, x _) as well:

[¢A(xO,x e) = --KA(xO, x _ -- Y_Ao(XO))+ O(c-a)x °, (3.16)

_--;K_(=°,• _- y_,o(_°)).O_(_°,•') + O(c-_)x°. (317)

Making use of the resulting expressions for functions/(A, LA, and Q_, which are given by relations

(3.15)-(3.17), from equation (3.12) we finally obtain the inverse transformations between proper

and ba_ycentric kinematically non-rotating RFs in the most general form:
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(3.18a)

y_ x_ o (xo)+= -- YAo

Note that the method used to derive expressions (3.18) corresponds to finding such coordinate

transformations YPA = YPA(xq) which transform the space-time 7An of the proper RFA to that of
,,,(o)the barycentric inertial RFo with the Minkowski metric rrnn in Cartesian coordinates. The latter

may be presented as follows: ds 2 A m n= _mn(yPA)dYA dYA = c2dt 2 _ d:_2.

3.2.3 The Coordinate Transformations Between the Two Proper RFs.

The ability to make the power expansion with respect to the small parameters allows us to

organize the iterative procedure for constructing the mutual coordinate transformation between

the two different proper RFs, namely RFA and RFB. The definition of the proper RF, (3.5), was

given based on the clearly defined physical properties of the barycentric inertial RF0 for the entire

N-body system. The transformation functions connecting the two proper RFs are easy to find by

applying the same procedure that was used for the construction of the inverse transformation,

(3.18). Thus, by making use of expressions (3.5) and (3.18), we may find the following relations

for the mutual coordinate transformation:

y°B = y°A + c-2KBA(yO, y_A) + c-4LBA(yOA, Y_A) + O(C-6)y °,

c-2,_a , 0 (.O(C-4)y_,y_ = y_ + y_4o(y_)+ u.A_y_,y_) +

where functions KBA, LBA, and Q_A are given as follows:

K.A(y°, y_) = g_(y°, y_)- KB(y°, y_ + y_o(_°)),

(3.19a)

(3.19b)

(3.20a)

o _ o o_ _Ao(yO))_. oQBA(YA,YA)= Q_(Y°A,Y_)- Q.(Y_,YA + VBo(YA) KBA(yOA, Y_A), (3.20b)

L._(y°, yl) = L_(y°,y_)- L. (_°, y_ + y_o(y°)) -

_, o 0 \

O_A _ 0 " QBA(YA, YA)"+ o (3.20c)
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Relations (3.5) and (3.18)-(3.20) represent the necessary expressions for developing the per-

turbation theory in the WFSMA for the problems of the dynamics of an astronomical gravita-

tionally bounded system of N self-gravitating arbitrarily shaped extended bodies. The transfor-

mations are presented in a functionally parameterized form by the two scalar functions, KA and

LA, and one three-vector function, Q_. Assuming all the bodies in the system are described by

the same model of matter, one may conclude that the form of all these functions should be the

same for any RF. This property of the transformations reflects the fact that a proper RF may

be defined in a general way for each body in the system. Moreover, one can see that expressions

(3.19)-(3.20) represent the group of motion that preserves the form-invariancy of the metric ten-

sor 7An of the background pseudo-Euclidean space-time for any proper RF. This means that the

RFs, constructed this way, should be equivalent and, hence, the physical phenomena will behave

exactly the same way in all of them.

3.2.4 Notes on an Arbitrary Rotation of the Spatial Axes.

In this subsection, we will show how one may generalize the results obtained on the case of the

transformations between dynamically rotational coordinate RFs. The need for such a coordinate

system may appear, for example, in the case when one will relate the VLBI, LLR, and the plane-

tary ephemeris RFs as well as in the case of relating the celestial and terrestrial frames (Folkner

et al., 1994; Sovers & Jacobs, 1994). The most general form of post-Newtonian transformations

between the coordinates (x p) of the barycentric inertial RF0 to those (_A) of the proper RFA,

which are undergoing the rotational motion of the spatial axes with an arbitrary time-dependent

rotational matrix T_ v (y_), may be presented in the following form:

 o,0, c Q (yA, tx c' = Y._o(Y °) + Avl, YA)" Y_4 + -5 a 0 T_e 0 0,c-4_ a (3.215)

The matrix _V(y_) represents both the rotation and the time-dependent deformation of the

spatial axes:

p.v 0 p,v 0 ojP 'v d_ 0 "_7-_A (YA) = O'A (YA) + A kVA), (3.22)

v_ vv and it represent the rescaling of the coordinateswhere the first term is symmetric, a A ---- cr A ,

with respect to time. The second term is anti-symmetric, wA = -w_ _', and it describes the
layrotation of the spatial axes of the coordinate grid in the proper RFA. Besides this, the tensor wA

contains the information about the precession and nutation of the spatial coordinates (Kopejkin,

1988; Fuknshima, 1991; Folkner et al., 1994; Sovers & Jacobs, 1994).

In the case when det 117_11 # 0, one may find the inverse transformations to those given

by expressions (3.21). To do this, we may repeat the same iterative procedure discussed above.

Making use of this method, one may easily obtain these inverse transformations in the following
form:

(3.23a)
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y_ = (_]'2_A1)_(X0) • [X v -- y_o(XO)-_ -

_

_o (rcA)_(x ) . (x_- y_o

where the function L_ is given as

L: (x0,x =

(3.23b)

with the differential operator #(x °, x e) taking the form

0
"(x°' x_)- 070+ [V_o(x°) (_" - nV)-

(3.23c)

+ °(c-2) ox0 (3.24a)

Note that if we neglect the rotation (i.e., will take the rotation matrix in the form of the Kro-

nekker symbol, T_(x °) : 6_ ), the differential operator eq.(3.24a) becomes

/_(x °, z e) -- (1 + O(c-2))0_0x 0 (3.245)

and the coordinate transformations (3.23) coincide with those of eq.(3.18) for the dynamically

non-rotating case.

For most practical applications in modern astronomy, one may neglect the effects due to the

time-dependent deformation of the axes and assume that the body is undergoing rigid three-

dimensional rotation with the rotational matrix taken in the form 7_AL'(yOA)----w_V(yOA). In the

proper RFA of an isolated rotating body, the following equation describes the dynamic properties

of the tensor 7_ _(y°):
d

dyOAn_4_'(y OA)= c'aZl?Ao(y oA)• nAZ_' (yO ), (3.25)

where V_ : -_ -P" is the vector of the angular velocity of rotation of the body (A). Usually, for

most of the problems in relativistic celestial mechanics, one assumes that the angular velocity

of the rotation of the celestial bodies is of the following order of magnitude: V_ _ (9(c-2)V_o,

where V_o is the barycentric velocity of the translational motion of the body (A) moving along
its world line (DSX, 1991). Then, taking this condition into account, one may neglect the time

derivative terms from the transformation matrix in relations (3.23) and make use of the standard

theory of coordinate transformations with rigid spatial rotation of the proper RFA. Otherwise,

for a general case with an arbitrary rotation, one should keep these terms in the post-Newtonian

parts of transformations (3.23).
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Followingthe proceduredepictedabove,wemayobtainthe mutualtransformationsbetween
the coordinatesof tworotating RFs.Furthermore,onemayextendtheresultsobtainedaboveto
the caseof the non-uniformrotation of anelasticbody (B) with the rotationalmatrix taken in
a generalform, _ _v/o0 o__ However,for the problemsof celestialmechanicsin the WFSMA,B kYB, ItB, I"

this generality is not necessary. Moreover, in 1991 the IAU made the recommendation that, in

order to avoid the appearance of the fictitious forces (Coriolis-like) acting on a observer in the

proper RF, all coordinate transformations for astronomical applications should not introduce any

rotation of the spatial axes at all (Fukushima, 1991; Brumberg, 1991; Klioner, 1993). For this

reason, we will limit ourselves in our further discussion solely to the case of the non-rotational
coordinate transformations, leaving the problem of rotation for other publications.

3.3 The Definition of the Proper RF.

In this subsection, we will finally present a way to find the transformation functions necessary for

constructing a proper RF with well-defined physical properties. As one can see from expressions

(3.4), in the WFSMA the main contribution to the geometrical properties of the proper RF A

in the body's immediate vicinity comes from its own gravitational field, h_ )A. Then, based on

the Principle of Equivalence, the external gravitational influence should vanish at least to the

first order in the spatial coordinates (Synge, 1960; Manasse & Misner, 1963). The proper RFA,

constructed this way, should resemble the properties of a quasi-inertial (or Lorentzian) reference

frame and, as such, will be well suited for discussing the physical experiments. Note that the

tensors h(°m)B and hint represent the real gravitational field that no coordinate transformation_rt2n

can eliminate everywhere in the system. In the case of a massive monopole body, one can

eliminate the influence of external field on the body's world line only. However, for an arbitrarily

shaped extended body, the coupling of the body's intrinsic multipole moments to the surrounding

gravitational field changes the physical picture significantly. This means that the definition of the

proper RF for the extended body must take into account this non-linear gravitational coupling.

In order to suggest the procedure for the choice of the coordinate transformations to the

physically adequate proper RFA, let us discuss the general structure of the solution gAn(YPA)

given by expression (3.4). Thus, in the expressions for Agmn, one may easily separate the four

physically different terms. These terms are:

(i). The Riemann-fiat contribution of the field of inertia vAn given by expression (3.7).

(ii). The contribution of the body's own gravitational field h(m°)A.

(iii). The term due to the non-linear interaction of the proper gravitational field with an external
field3 °

(iv). The term describing the field of the external sources of gravity. This term comes from the

transformed solutions h_ )B and the interaction term h _nt• vTy/,n •

The first contribution depends on the external field in the gravitational domain occupied by

the body (A) and appears to be 'parametrized' by transformation functions (3.5). Note that

for any choice of these functions, by the way they were constructed, the obtained metric 9An

1°This contribution is due to the Newtonian potential and the potential _2 in expressions (2.5). These interaction

terms show up as the coupling of the body's intrinsic multipole moments with the external field.
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satisfiesthe gravitational field equationsof the specificmetric theoryof gravity under study.
Furthermore,basedon the propertiesof the properRFAdiscussedabove,onemayexpectthat
the functionsKA, LA, and Q_ should form a background Riemann-flat inertial space-time -yAn

in this RF that will be tangent to the total gravitational field in the vicinity of the body (A)'s

world line, _A. Moreover, the difference of these fields should vanish to first order with respect to

the spatial coordinates (i.e., the 'external' dipole moment equals zero (Thorne & Hartle, 1985)).

These conditions, applied to moving test particles, are known as Fermi conditions (Fermi, 1922;

Manasse _ Misner, 1963; Misner et al., 1973). We have extended the applicability of these

conditions to the case of a system composed of N arbitrarily shaped extended celestial bodies.

In order to obtain the functions KA, LA, and Q_ for coordinate transformation eq.(3.5), we

will introduce an iterative procedure that will be based on a multipole power expansion with

respect to the unperturbed spherical harmonics. To demonstrate the use of these conditions, let

us denote HAn(yPA) as the local gravitational field, i.e., the field that is formed from contributions

(ii) and (iii) above. The metric tensor in the local region in this case can be represented by the
_(loc) [_,p _ A P

expression Stun k_AI = "Trnn"_ g_n(YA). Then the generalized Fermi conditions in the local region

of body (A) (or in the immediate vicinity of its world line, "YA) may be imposed on this local

metric tensor by the following equations:

lim gmn(YPA) = _rnnn(Z°c)(_A)_A' (3.26a)
_'"* "fA

lim F_n(_A)= --mnPk(Z°c)(_A), (3.26b)
"7""*_'A "YA

Fk(l°c) _2where "7 is the world line of the point of interest and the quantities mn kUA/ are the Christoffel
..(toc) _o2symbols calculated with respect to the local gravitational field, _trnn k_A]" Application of these

conditions will determine the functions KA, LA, andQ_, which are as yet unknown. Moreover,

this procedure will enable us to derive the second-order ordinary differential equations for the
functions a 0YAo (YA) and Q_(y°A, 0), or, in other words, to determine the equations of the perturbed

motion of the center of the local field in the vicinity of body (A).

Relations (3.26) summarize our expectations based on the Equivalence Principle about the

local gravitational environment of the self-gravitating bodies. By making use of these equations,

we will be able to separate the local gravitational field from the external field in the immediate

vicinity of the bodies. However, these conditions only allow us to determine the transformation

functions for the free-falling massive monopoles (i.e. only up to the second order with respect

to the spatial coordinates). Transformation functions (3.5) in this case will depend only on the

leading contributions of the external gravitational potentials UB and V_ and their first derivatives

taken on the world line of body (A). The results obtained will not account for the contribution

of the multipolar interaction of the proper gravity with the external field in the volume of the

extended body. This accuracy is sufficient for taking into account the terms describing the

interaction of the intrinsic quadrupole moments of the bodies with the surrounding gravitational

field, but some more general condition, in addition to eq.(3.26), must be applied in order to

account for the higher multipole structure of the bodies.

Thus, as we shall see later, conditions (3.26) enable one to obtain the complete solution

for the Newtonian function KA. Functions L A and Q_ may be defined up to the second or-

der with respect to the spatial point separation, namely LA, Q_ ".-'O(ly._13), so the arbitrariness
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of higherorders(k > 3) in the spatialpoint separationwill remain in the transformation. In
order to get the corrections to these functions up to the k th order (k _ 3) with respect to the

powers of the spatial coordinate y_, one should use conditions that contain the spatial derivatives

of the metric tensor to the order (k - 1). The mathematical methods of modern theoretical

physics generally consider local geometrical quantities only and involve second-order differential

equations. These equations alone may not be very helpful for constructing the remaining terms

in functions LA and Q_ up to the order k _ 2. However, following Synge (1960), one may apply

additional geometrical constructions, such as properties of the Riemann tensor and the Fermi-

Walker transport law (Misner & Manasse, 1963; Ni, 1977; Ni & Zimmermann, 1978; Li & Ni,

1978, 1979a,b). Another possibility is to postulate the existence of so-called 'external multipole

moments' (Thorne, 1980; Blanchet & Darnour 1986; Brumberg & Kopejkin, 1988a; DSX, 1991-

1994). However, those moments are defined through vacuum solutions of the Hilbert-Einstein
field equations of general relativity in an inertial RF, while the influence of external sources of

gravity are ignored. Defining the moments in this way is essentially equivalent to defining the

structure of the proper RF for the body under question.

The most natural approach for defining the desirable properties of the proper quasi-inertial

RFs for the system of extended and deformable bodies is to study the motion of this system in

an arbitrary KLQ-parametrized frame. There are two different ways to do that, namely: (i) to

study the infinitesimal motion of each element of the body, or (ii) to study the motion of a whole

body with respect to an accelerated frame attached, for example, to the center of inertia of the
local fields of matter, inertia, and gravity. In our method, we will use the second way and will

study the dynamics of the body in its own RF. Our analysis will be directed toward finding the

functions KA, LA, and Q_ with the condition that the Riemann-flat inertial space-time _/An(_A)

corresponding to these functions will be tangent to the total Riemann metric gm_(_A) of the

entire system in the body's vicinity. Physically, one expects that this inertial space-time will

produce a 'fictitious' (or inertial) force with density fKLQ acting on the body in its proper RF.

At the same time, the body is under the influence of the overall real force due to the local fields of

matter and gravity with density _. Thus, the condition for finding the transformation functions

KA, LA and Q_ is conceptually simple; the difference between these two densities, :ff = fO--fKLQ,

should vanish after integration (or averaging) over the body's compact volume:

(3.27)

Note that the notion of 'the center of mass' in this case loses its practical value, and one should

substitute instead 'the local center of inertia.' Thus, the force fKLQ should provide the overall

static equilibrium for the body under consideration in the local center of inertia, which is defined

for all three fields present in the immediate vicinity of the body, namely: matter, inertia and

gravity. Let us mention here that in practice it is not possible to separate these two forces,

and fKLQ, from each other. Fortunately, we will be able to obtain the difference between them,

9_. This will considerably simplify the further analysis.

In order to construct the necessary solution for functions KA, LA, and Q_ in a way that will

be valid for a wide class of metric theories of gravity, one must first analyze the conservation

laws in an arbitrary KLQ-parameterized RF. This could be done based on the conservation law

for the density of the total energy-momentum tensor _n of the whole isolated N-body system:

A A 71 (FA)= 0, (3.2s)
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whereVA is the covariant derivative with respect to the total Riemannian metric gAmn(YPA) in

these coordinates. Then, by using a standard technique for integration with the Killing vectors,

one will have to integrate this equation over the compact volume of the body (A) and one can

obtain the equations of motion of the extended body (Fock, 1957; Chandrasekhar, 1965; Will,

1993). Then the necessary conditions, equivalent to those of (3.27), may be formulated as the

requirement that the translational motion of the extended bodies vanishes in their own RFs.

This corresponds to the following conditions applied to the dipole mass moment rn_ --/{At}:

d2rn_ dma4 _

dyOA2 -- dyOA -- m_ = 0, (3.29a)

where the quantity m_ is calculated based on the total energy-momentum tensor matter, inertia,

and gravitational field taken jointly (similar to the condition of eq.(2.12)). These conditions may

also be presented in a different form. Indeed, if we require that the total momentum P_ of the

local fields of matter, inertia, and gravity in the vicinity of the extended body vanish, we will

have the following physically equivalent condition:

dP_

dyOA = P_ = 0. (3.29b)

These conditions finalize the formulation of the basic principles of construction of the relativistic

theory of celestial RFs in the WFSMA.

This method is demonstrated to be a useful tool in practical analytical and numerical calcu-

lations for a number of metric theories of gravity (Turyshev et al., 1996). Thus, the properties

in the derivation of the unperturbed solutions for a number of metric theories of gravity 11 may

be used in order to produce the general solution for the problem of motion of an N-body system.

In each particular case, for a specific theory of gravity there exists the common strategy for

constructing the iterative procedure, which may be expressed as follows:

1o One should first choose the particular model of matter distribution, T ran, and define the

small parameters relevant to the particular problem under consideration. The next step

is to perform the power expansion with respect to these parameters for all the functions

and fields entering the gravitational field equations of a particular metric theory of gravity

and, by using the standard methods of the WFSMA (Fock, 1955; Will, 1993), to find the

unperturbed solution for an isolated distribution of matter, h (°)?Tin.

. Then, by using the obtained unperturbed solutions and the WFSMA theory of the co-

ordinate transformations (developed in Appendix B), construct the general form of the

solution for the total metric tensor from the anzatz eqs.(3.1)-(3.4). Then, by using the

generalized de-Donder harmonical gauge and the Fock-Sommerfeld boundary conditions,

(3.8), construct the interaction term, "-mnhint, and present the solution in coordinates of inertial

barycentric RF0 and in an arbitrary, KLQ-parameterized quasi-inertial RF.

. In order to find the functions KA, LA, and Q_ of the coordinate transformation to the
coordinates of the proper RFA and fix the remaining coordinate freedom, one should apply

the procedure for constructing the proper RF. First of all, find the solution for these func-

tions by implementing the conditions of eqs.(3.26) in a local region of the body. Then by

nThe solutions for an isolated distribution of matter (the global problem) are well known, and one may find
their general properties in Will (1993).
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generalizingthe obtained result on the case of an arbitrary extended body, integrate the

local conservation law (3.28) over the body's volume, in order to obtain the general form

of the coordinate transformations from conditions (3.29).

4. In order to obtain the final multipolar solution for the astronomical N-body problem, one

should substitute the obtained transformations into the generalized gravitational potentials.

Then, by making the expansion of these quantities in the triple power series with respect

to small parameters (gravitational constant G, the inverse powers of the speed of light c -1,

and the parameter of the geodesic separation _kA".. YY4/lYBAo I), one will have obtained the

desired representation for the metric tensor and the corresponding equations of motion.

In the following sections, we will discuss the application of the proposed perturbation formal-

ism for the solution of the problem of motion of an arbitrary astronomical N-body system in the

general theory of relativity.
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4 General Relativity: Solutions for the Field Equations.

In this section, we will apply the iterative formalism discussed in the previous section to construc-

tion of solutions for the problem of motion of the system of N extended bodies in the theory of

general relativity with a perfect fluid as a model for matter distribution. In this section, we will

obtain the solution for the Hilbert-Einstein field equations and a perfect fluid model of matter

distribution in its application for solving the problem of motion of N extended self-gravitating

bodies in the WFSMA. We will present these solutions in both barycentric inertial and proper

quasi-inertial RFs. To do this, we must obtain all the necessary transformation rules under the

general coordinate transformations discussed in the previous section. In order to simplify the

discussion in this section, all these rules were obtained in a general form and are presented in

the appendices, which will be referred to as necessary.

The gravitational field equations of the general theory of relativity were discovered in 1915

and presented by Einstein (1915a,b) (for more details see Misner et al. (1973)) as follows:

87rG (_mn 1 ^-  gmnT) (4.1)vzzg -

Let us mention that these equations were independently obtained and studied also by Hilbert

(1915). At the present time, there exists confidence that a relativistic theory of astronomical RFs

must be founded on the equations of the general theory of relativity, (4.1). The mathematical

elegance of the field equations as well as the simplicity of the physical foundations of this theory

made it particularly easy to perform and analyze the relativistic gravitational experiments. Thus,

general relativity has passed many serious tests both in the weak gravitational field of the solar

system (Will, 1993) and the strong-gravitational-field test based on the data obtained from the

continuous observations of the double pulsar PSR 1913+16 (Damour, 1987; Damour & Taylor,

1992). It should be noted that presently the analysis of high-precision measurements of the

light deflection and the delay of propagation time of radio signals in the solar gravitational field

confirms the WFSMA of the general theory of relativity with an accuracy on the order of 1.5%

and 0.5%, respectively. Concerning the practical applications, we must mention that most of

the modern methods for relativistic data reduction as well as the solar system ephemerides are

based upon the predictions of equations (4.1) with the perfect fluid model of matter (2.2). This

is why we begin the application of the new method for construction of the relativistic theory of

the RFs in the W-FSMA from the general theory of relativity.

4.1 The Solution for the Interaction Term.

Let us assume that the non-gravitational forces are absent, the bodies are well separated, and

the bodies' matter may be described by the model of a perfect fluid with the density of energy-
momentum tensor _m_, given by expressions (2.1)-(2.2). As we have previously discussed, all

the field equations and the boundary and initial conditions for this problem are much better

defined mathematically in the coordinates of the inertial RF0, so it is quite natural to begin the

discussion within this reference frame. In Section 2, we assumed that the general solution for

the gravitational field equations gmn in coordinates (x p) of the barycentric inertial RF0 may be
written as follows:

B=I

(4.2)
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At this point, wealreadyhaveall the necessary'tools' to constructthe metric tensor gmn(xP).

Let us recollect all the gained knowledge, which is necessary to obtain this tensor, namely:

(i). _,(0)B forThe unperturbed solution for the Hilbert-Einstein gravitational field equations, °'kz ,

an isolated distribution of matter with the perfect fluid model of matter distribution pre-

sented by the energy-momentum tensor, T ran, eq.(2.1), in coordinates of inertial RF0 has
_(0)Ba simple form and in terms of the tensor, ,omn , it is given by expressions (2.5) with the

conditions 7 -- _ = 1, v = r = 0.

(ii). The general transformation rules of these solutions under the coordinate transformations

(3.5) with the transformation matrix as in eqs.(C9) are established in the form of relations

(07).

(iii). The transformation properties of the gravitational potentials, which are defined in Ap-

pendix A, are given by expressions (E9a), (E14a), (E15a), and (E16a).

By substituting all these expressions into formula (4.2), we will obtain the following expressions

for the metric tensor gmn in the coordinates (x p) of the barycentric inertial RF0:

02g00(x°,x_) = 1- 2Zu.(xp) + E 2vi(x,') + 2,_.(_p) + _o_X_(_p)+
B B

_2VSo_,(xO)v_o(Xo) UB(Xp) )_ 0 _ 02• + VSo(X)vs0(x°) •075_0x_XB(_P)+

+a_o(X0). 0 _ (x°,x_ _(=°)).UB(zP))+hoo (z)+-_x_XB(XP ) + 4 KA -- YSo int<4> p O(C-6), (4.3a)

goa(x °, x _) = 4 ___ "7c,_,V_(x p) + O(c-5), (4.3b)
B

ga_(xO, x v) = ")'a_ (1 -_- 2 E UB(XP)) "zr O(C-4)' (4.3c)
B

l, int<4> is the only term that hasn't yet been specified. In order to findwhere interaction term '°00
this term, one should use the Hilbert-Einstein field equations, eq. (4.1), written in the coordinates

of inertial RFo and expanded with respect to the small parameter, c -1.

The necessary expansions for the Ricci tensor, Rmn, eq.(B9), and for the modified energy-

momentum tensor, Stun, which is defined by eqs.(B12-B13), are given correspondingly by the

expressions (D3) and (Dll) in this CS. By making use of these expressions, one may obtain
the linearized Hilbert-Einstein field equations for an N-body system. Finally, by equating the

expressions with the same orders of magnitude, with respect to powers of the small parameter,

c -1, we will obtain the following equations:
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0 2

_"_a=.a=_--9<_>'_0o, , = -8_ _pB(y_(_)) + O(c-_), (4.4_)
B

2
^ uA 09 ,.,<2> {xp, _. o_-p--_o_z, ,=8_pB(y_(x"))+o(c-4),

B

(4.4b)

692

7VAOxUOx a_°a-_<3>(.p_<_¢ = --16rrTav. EpB(yq(xP))'v"(xP)+O(C-5), (4.4C)
B

0xV0xA 00 k ]--- -_Av (xP) g#02>(xP) +

02 <2> p ^Av 0 .<2>(_px 0 _<2>i_p_

+O-ygoo (z)-y g_z_oo _._jb-_z_oo _._j=

B B'

(4.4d)

By substituting into these equations the expressions for the metric tensor gmn(X p) given by

relations (4.3), one may see that the first three equations from (4.4) are automatically satisfied
<2> p <2> p <3>, p_for the components g00 (x),ga_3 (x), and g0a ix ) of the metric tensor. However, the last

equation from this system, eq.(4.4d), written for the component g@o4>, produces the necessary

equation for the determination of the interaction term h_%t<4> as follows:

,,/.Vc_x_Ox u02 [h_t<4>(xp)_ EB (2vB°_(x°)v_B°(x°) "UB(xP)--

• 02

JXl; _ XI_J

:
: 4__ Z Z _-z_u_'(_)•

BOX# B'

The general solution to this equation is easy to obtain and it may be written as follows:

(4.5)
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h_'<4>(x°,=_)= Z [2vB0_(=°)V_o(X°).U_(=P)-
B

0 2

-V_o(_°)_§o(=°)"a%-_-Zo=_xB(=")-

d3x I
B'

+pB, Ix ,x - y_o(X°))UB(x°,x )] + W_ot>(x°,x v) + O(c-6), (4.6)

where summations over both (B) and (B') are from 1 to N. The only requirement on the arbitrary

function W_ 4> is that it should satisfy the ordinary Laplace equation:

02

_ O=_O=_w0_4>(x°,xv) = 0(c-6). (4.7)

The solution to equation (4.7) has terms with both possible asymptotics: one falling off at infinity

,,, 1/r k and the other divergent, i.e., ,._ r k. The choice of the solution should be made in order

to account for cosmological, galactic, or gravitational wave contributions to the behavior of the

metric tensor gmn at large distances from the system. If there is no incoming radiation falling on

the system from outer space and the background metric is accepted as having been satisfied for

the cosmological conditions of the PPN gauge, 12 then the Fock-Sommerfeld boundary conditions

of eq.(3.8) enable us to choose the past-stationary and asymptotically Minkowskian solution to
the field equations of general relativity (Damour, 1983). However, for further calculations we

will retain the function W0_ 4> as unspecified.

l_int<4> in the expression for theBy substituting the obtained result for the interaction term '_00

temporal component of the metric tensor, eq.(4.3a), we could write the final solution for the

Hilbert-Einstein field equations in coordinates (xP) of the inertial barycentric RF0 as follows:

B B

02+ E - 4'_B(=_)- 2_3B(=_)- 6_48(=_)+ _=o_xB(=_)-
B

__f_I"_"_'':_,_,_ (.o,_,_- _o(_O))Z v_,(=o,_,_))_, +Wo_,>(=o,_) +o(c-O), (4.8a)

:2The main requirement is that the cosmological evolution of the background metric be described by the

Robertson-Walker cosmological solution at large distances from the system of the bodies under consideration

(win, 1993).
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• =4 +
B

B

(4.8b)

(4.8c)

The obtained expressions, (4.8), are the usual form of the general solution for the global prob-

lem in general relativity of the isolated distribution of matter, which was first obtained by Fock

(1957) (see also Fock, 1955; Damour, 1986; Kopejkin, 1989; Will, 1993). It is easy to see that the

general solution for the N-body problem in the barycentric inertial RF0, eqs.(4.8), demonstrates

the property of linear superposition of unperturbed fields h_ )B boosted by transformations (3.18)

in components _00 _ J,safl _ ], and g0a kx ) of the metric tensor. The non-linear contribu-
tion due to the motion of the bodies and their gravitational interaction with each other appears

rant<4> which is given by rela-beginning in component g_o4>(x p) through the interaction term '_00 ,

tion (4.6). One may note that the interaction term contains three groups of terms with physically

different origins, namely:

(i). The first seven terms are due to the boost of the isolated unperturbed solutions h(°m)B by

transformations (3.18).

(ii). The eighth term is due to the mutual gravitational interaction between the bodies in the

system.

(iii). The last term, V¢o_4>, is caused by the possible inhomogeneity of the background space-
time.

It is clear that the terms of the first group are frame dependent (or coordinate dependent).

Hence, these terms are responsible for the coordinate dependence of the quantity _,_nt<4> in' _00

general. This implies that this term depends on the properties of the proper coordinate system

chosen for description of the internal problem in the vicinity of a body (B) in the system. We

can continue the analysis of these terms in the barycentric inertial RF0. However, for further

calculations, it will be more convenient to shift the discussion to the proper RFA.

The transformation properties of the interaction term are given by the relations (D9). These

relations suggest that, in the first post-Newtonian approximation, the form of the interaction

term in the coordinates (_A) of the proper RFA could be obtained by taking into account the

transformation properties of the gravitational potentials only. Thus, by making use of the direct

transformations (3.5) with the transformation matrix (C1), one may write the interaction term
hint<4> in the coordinates of the proper RFA as follows:00

hint<4> (_ 0 h_ t<4> h int<4> f"'P _'-boo _A,Y_.) = (Y_.)+ A_ _'AJ

_,,t<4> to,' _ O(c-6),+ ,oBe, + +

where the following notations have been accepted:

(4.9a)
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h_t<4>(_A) = 2 SA d3y_APA(yO'°'_ 0 [Q_(yO, y_) _ Q_(yOA, Y_)j__As_y'__ L ]y_ Y_I

o _ o _ o n 02

--2VAox (YA)VAo(YA) " UA (YPA)-- VAo (YA)VAo(yOA)" ay_ by_A XA (YPA)-

_a_0(yo).0_xA(_ )_ 0 040--_AKA(yA,yA)"UA(_) + V(c-6),

h_nt<a>(yPA) = 4 _ (UA(YPA)UB(yPA)--AB

B¢A \

d3_ [p_(_o_x)u.(_o,_:_)+pBmo,_)_A(_o_)]) +O(__)'

f 3 ! 0 tv u 0

B#A

__ YA, YA

×o_ [ ly_-yT,I +

+2_o_(_o)(_o(_°1- 2_om°))•u_(_)-

(4.9b)

(4.9c)

-- a.o(YA)" _s(_)--- _o_ _o_" Oy_Oy_(_) - _ o _

--4_---_AK_(yOA,Y_A--Y_BAo(yO)) " UB(_A)) + O(c-6), (4.9d)

= 4 _ _ (UB(yPA)UB,(yPA)--h_nt<4> r_y _
BB' t,YA)

B#A B'#B \

- - o o

+pS,(yOA, y'_ -- y_,Ao(yO))Us(yOn, y'_)]) + 0(c-6). (4.9e)

The physical meaning of these new functions is quite clear. The functions h_nt<4> and h_ t<4> are

the post-Newtonian contributions of the unperturbed solutions h(m°) for body (A) and all the rest

of the bodies (B_A) in the system, boosted by transformations (3.5) and (3.20). The function

hint<4> is the contribution describing the gravitational interaction of the body (A) with the restAB

_int<4> is the function, physically analogous toof the bodies in the system. And the last term, '°SB' ,

the previous one, but describing the gravitational field generated by the gravitational interaction

of the rest of the bodies in the system (B, B_ _A) with each other in the vicinity of the body (A).

The advantage of using conditions (3.8) is that they provide an opportunity to determine the
int -p_interaction term hmn(X ) in a unique way. It should be stressed that the corresponding solution

56



gmn(x p) in the barycentric inertial RF0 resembles the form of the solution for an isolated one-

body problem, (2.5). The only change that should be made is to take into account the number

of bodies in the system: p _ _B PB, where PB is the compact-support mass density of a body
int p(B) from the system. However, both the interaction term hmn(Ya) and the total solution for the

metric tensor gmn in the coordinates (_A) appear to be 'parameterized' by the arbitrary functions

KA, LA, and Q_. This result reflects the covariancy of the gravitational field equations as well

as the well defined transformation properties of the gauge conditions, (3.6), used to derive the

total solution. This arbitrariness suggests that one could choose any form of these functions in

order to describe the dynamics of the extended bodies in the system. However, as we noticed

earlier, the unsuccessful choice of the proper RF A (or, equivalently, the functions KA, LA, and

Q_) may cause an unreasonable complication in the future physical interpretations of the results
obtained.

4.2 The Solution of the Field Equations in the Proper RF.

Once the interaction term h_ t<4> has been defined, one may easily obtain the form of the

general solution to the Hilbert-Einstein field equations gmn(yYA) in the coordinates of the proper

RFA. This solution may be obtained directly from the tensor gmn(X p) by the regular tensorial
transformation law as follows:

Oxk OxZ Oxk Oxt . s

gmn(YPA) = Oyr_ c3y_ gkZ(xS(YPA))= _y_'_y_ Tkl(X (YPA))+

Oy_ ayIB h(O)Blys Ox k Ox l
+ Z + OUr (4.10)

B#A

In order to obtain the final result for the metric tensor gmn in the coordinates of the proper

RFA, we should establish and then make use of the transformation properties of all the quantities

presented in expression (4.10). These quantities were obtained in the appendices as follows:

(i). The transformation properties of the background Riemann-fiat metric 7An in the coordi-

nates (_A) are given by relations (C'5).

(ii). The transformations of the unperturbed solutions h(°m)B from the coordinates (_B) of the

proper RFB to those of the RFA are presented by relations (D8).

(iii). The transformation properties of the interaction term _,mt'°kl were established and discussed

in the previous subsection, where they were given by relations (4.6) and (4.9).

(iv). The transformation properties of all the potentials, which enter the above-named formulae,

are given by eqs.(E9b), (E14b), (E15b), and (E16b).

By substituting all these quantities into relations (4.10), we will obtain the components of

the metric tensor gmn(yPA) in the coordinates of the proper RFA as follows:

0 o v o

g00(_A) = 1 + 2_yOAKA(YA, YA) + VAoa(YA)VAo(Y °) -- 2 _-_UB(yPA)+
B

a o 0 o _ 2 o 0 _ o .
+2_yOALA(YA, Y_) + (-_y_ KA(YA, YA)) + 2VAo_(YA)_yOAQA(YA, YA)+

+H_04> (yO, y_) + O(c-6), (4.11a)
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0 L o _ 0 o
goa(YPA) = _y_ A (YA, YA) -- VAo_ (y OA)_yOAK A (YA, YUA)+

o o _ o f_Q_(_OA,y_)+n_y_(_)+O(c-_ ), (4.11b)+ VAoAYA)b-_-aT._QA(yA,Y_)+ _
WA cIY_4 B

v 0 og_Z(_A)= _o_+ Aoo(YA)VAo.(YA)+

0 _ 0 v (9_
+.yav_u_QA(YA, YA)+.y# V0 _'_"QVA(yOA,YVA)+ 2_-_7_#UB(yPA)+O(C-4), (4.11c)

YA _A B

where the post-Newtonian term H_o 4> in the component goo(_A) of equation (4.11a) denotes the

following expression:

H<4> r 0 1,(0)<4> h_t<4> int<4>o0 [YA,Y_)= '°00A (_) + (_) + hAB (_A)+

-4- E Lc_yOA ayOA -_- -_-'_BB' kYA' -]- W_04>(_A)" (4.12a)
B#A

The latter expression may be presented in terms of the generalized gravitational potentials as

follows:

0o _YA,Y_)= 2(ZU_ + _2 -4¢_B(_A)-- 2¢_(_A)- 6_(_A)--
B B

3 I 0 2

YAPB [YA, H- _

vA _ O_v 3 r O\ 02
o _ o .u_(_)_ O_O _--2VAox (YA)VAo(YA) AokYA) AotYA) " XB(YPA) -

YA YA

--a_° (Y°A) 00-T-2X_(ypA) oy)O 0 v )• _4.W__d_KA(BA, BA).UB(YPA) +W_04>(_A)+O(c-6 ). (4.12b)
YA

The first three terms in expression (4.12a) describe both the unperturbed gravitational field of

the body (A), boosted by the coordinate transformations (the terms ,_(0)<4>o0OAand h_t<4>), and the

gravitational field produced by the interaction of this field with one produced by the rest of the
hint<4>bodies in the system (the term '_AS ). These are the terms that govern the local gravitational

environment in the immediate vicinity of the body (A), producing the major contribution to the

equations of motion of the test particles orbiting this body. The next three terms in expression

(4.12a) are the terms that are due to the boosted unperturbed gravitational fields produced by
the rest of the bodies in the system and the gravitational field caused by their interaction with

each other, presented in the coordinates of the proper RFA. This external gravitational field

should appear in the equations of motion of the test particles around the body (A), written in

the coordinates of the proper RFA, in the form of a tidal interaction only (Synge, 1960). Note

that the approach discussed here is the generalization of the concept of the neutral test particle
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freely falling in the externalgravitationalfield. It is knownthat, up to thesetidal corrections,
a freely falling test particlewill behaveasif externalgravity is absent(Bertotti &:Grishchuk,
1990). In our case,the extendedbody (A) is not movingfreely; instead,aswewill seelater,
its internalmultipolemomentsarecouplesto the externalgravitationalfield throughthe terms
h_4nt<a> and _int<4> This coupling produces a force that results in the deviation of the center of'_AB •

mass of this body from the support geodetic line along which it would move if it were a neutral

test particle (Denisov & Turyshev, 1989). The presence of this term and its significance for

solving the local problem has been pointed out by a number of authors (see, for instance, Thorne

g: Hartle (1985); Kopejkin (1987)); however, to our knowledge, the interaction term has never

been previously presented in a closed relativistic form.

By straightforward calculation, one may check that the obtained metric tensor gmn(yPA) sat-
isfies the Hilbert-Einstein field equations written in the coordinates of the proper RFA. To do

this, let us note that the covariant de Donder gauge is singling out these coordinates according to

conditions (C2). This gives the expressions for the Ricci tensor Rmn in the form of eqs.(C4). The

modified energy-momentum tensor Stun in this coordinate system is given by expressions (C12).
By collecting all these expressions together, one may obtain the linearized Hilbert-Einstein field

equations, eq.(4.1), presented in the coordinates of the proper RFA. Finally, the substitution

of the relations of eqs.(4.11) in the obtained linearized equations will complete the proof of the

correspondence between the metric tensor gmn(yPA) and the field equations.

Thus, metric (4.11) is the KLQ parameterized solution of the Hilbert-Einstein gravitational

field equations in the coordinates of the proper RFA. The nature of this result is basically the

post-Newtonian boost of solution (4.8) (obtained in the inertial RF0) to the new non-inertial

coordinate system defined in the vicinity of an arbitrary body (A). It is well known that the

Riemann metric tensor gmn(yPA) contains ten degrees of freedom and could not be transformed

to the Minkowski tensor for the entire space-time by any choice of a coordinate transformation

that has only four degrees of freedom. This transformation could be done at one point of the

space-time only (Eisenhart, 1926) or along the geodesic line (Manasse &: Misner, 1963; Misner et

al., 1973; Landau & Lifshitz, 1988). Such an RF is called a quasi-inertial or 'locally Lorentzian

frame.' Our future discussion will be based on the form of the metric tensor in the proper RFA

given by relations (4.11). In the next section, we will implement the conditions for construction

of a 'good' quasi-Lorentzian proper RF as discussed in Section 2, which will enable us to find the

unknown transformation functions KA, LA, and Q_.

4.3 Decomposition of the Fields in the Proper RF.

Concluding this section, we would like to emphasize that the solution to the Hilbert-Einstein

field equations gmn in the vicinity of the body's (A) world line in the coordinates (YYA)of its
proper RFA in the first WFSMA may be decomposed into the following three major groups:

g-m(_A) = "YAn(_A) + HAn(_A) + HmBn(_A), (4.13)

where the notations for these groups and their meaning are as presented below.

(i). The first term, _,A, is the local inertial (or Riemann-flat) field that is presented by eqs.(B4).

This term is also convenient to split into two parts as shown by the relation

oxk oxl " s .... _<PN>[__P_ (4.14)
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(ii).

where7(m°) is the usual Minkowski metric in the coordinates of the proper RFA. The

second term here, -<PN> is the KLQ-parameterized post-Newtonian contribution to this'[rnn ,

local inertial field at the vicinity of the body's (A) world line.

The second term in eq.(4.13), HAmn, is the local gravitational field, which is given as follows:

HA(_A) a(0)A a_nt<4> m_t<4> O(c-6),= '_00 + '_OOA + '_OOAB +

(iii).

g0A(_) _(0)A= "0a + O(c-5), HA_(YPA) = h(a°)ZA + O(c-4) , (4.15a)

_(0)Awhere the terms ,,,ran are the components of the unperturbed proper gravitational field of

_mt<4> (given by eq.(4.9b)) is the contribution due to the boost ofthe body (A), the term '°00A

this unperturbed field to the accelerated coordinates of the proper quasi-inertial RFA, and

the last term, '°AS_mt<4>(which is presented by eq.(4.9c)), is caused by the interaction of the

proper unperturbed gravitational field with the external gravitation. Thus, the component

H A<4> has the form

0 _

H&<4>(_)= 2U_(_) + 2VA(_)+ 0--_x_(_)+

0 _ o v
+2fAdS, . o ,.. rQA(YA, YA)--Q_(Y°A,Y'X)]_

YAPA(YA'YA)_ytA_L" _ Y_I

o ), o ), o v_ o 02
--2VAo) _ (YA)VAo(YA) " UA(YPA) -- UAo(YA) Ao(YA) " Oy_tOy_A XA(YPA)--

-a_o (V°) •_ x_ (_) -
0

YA 4_yOAKA(YA, YA) .0v UA(yPA)+

+4 Y'_ (UA(_)Us(_)- fA 'Y_Ad3--y_-YX 'PA(yO'y_AV)UB(yO'y_)) +0(c-6) , (4.15b)
B#A

where the subscript (A) for the integral sign means that the integration is performed over

the volume of that body for which mass density is integrated, namely: fA d3Y_APB = 6AB.

The last term in eq. (4.13), HBmn, is the external gravitational field, presented as follows:

[o_,___b_oy_ h(o)_,y,,G_I <4>
H_(YPA) = _ [OyOAOyOA k, , B, A,q +

B#A

q__int<4> (_ p _ hint<4> (oiP _ 0(C-6),'ooo8 _ua; + 'ooosB, _aJ + w_o4>(_) +

HaBo(YPA)= _ Oy_4 OyoA a, , B, A,, +
B#A

HBfl(G) _ (O)B s O(c-4), (4.16a)= h_z (_B(G)) +
B#A

where the first two terms in the component HoBoare the result of the boost (see eq. (4.9d))

to the coordinates (_A) of the RFA of the unperturbed solutions h(k_)B for the bodies (B)
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_,znt<4>(givenby eq.(4.9e)),is due to thein the system(besides(A)); the third term, '_OOBB'

mutual gravitational interactions of these external bodies with each other; and, finally,

the last term is due to existing inhomogeneity of the background space-time in which the

considered system is embedded. The component H0_<4>(_A) may be given as follows:

02
B#A B'#A

3 , 0 +YsA° oy_[ ly_ y_l J-

0 ,k 0--2_A0_(YA)VAo(YA)UB(FA) v_° o _ 0 02• - (YA)'Ao(YA)"__8(_)--
C'gAUY A

)--a_4o(yOA)'_,_XB(YPA)--4 KA(yOA, Y_A)'UB(yPA) + O(c-6),
"YA

where the potential _2S(y_A) entering the term _B(_A) is defined as

(4.16b)

(4.16c)

The decomposition presented by eqs.(4.13)-(4.16) mav be successfully continued to the next

'post-post-Newtonian; order; however, the obtained accuracy is quite sufficient for most modern

astronomical applications. The results obtained in this section will become a useful tool in the

next section for constructing a proper RF with well-defined physical properties.
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5 General Relativity: Transformations to the Proper RF.

In this section, we will present the construction of a 'good' proper RF for an arbitrary body (A).

This procedure should enable one to obtain the yet unknown transformation functions KA, LA,

and Q_. It is clear that one may choose any form of these functions for the description of

the gravitational environment around the body under question. The analysis presented in the

previous section shows by the results in eqs.(4.12) that, in order to solve the local problem, it is

permissible to separate the contributions in the metric tensor gmn(YPA) into several terms. The

first contribution is due to the inertial sector of the local space-time, the second is produced

by the body itself, the third term is caused by the external sources of the gravitational field,

and the last one is due to the interaction of the body's multipole moments with this external

gravitational field. It is well known that if the body (A) is a neutral monopole test particle, this

external gravitational field will define the parameters of the geodesic line that this test body

will follow (Einstein et al., 1938; Fock, 1957; Will, 1993). The equations of motion for spinning

bodies are different from the latter by additional terms due to coupling of the body's spin to

the external gravitational field (Papapetrou, 1948, 1951). It was noted that the presence of non-

vanishing internal multipole moments of extended bodies significantly changes their equations of

motion, and several attempts have made to account for these effects (see, for example, Ashby &

Bertotti, 1986; Shahid-Salees et al., 1991; Brumberg & Kopejkin, 1988a; DSX, 1991-94). In this
report, we will introduce a new approach based on the KLQ parameterization discussed in the

previous section.

The general idea for constructing the 'good' RE A in terms of the functions KA, LA, and Q_ is

to choose these functions in such a way that the corresponding Riemann-flat inertial space-time

7An (which is the background space-time for the proper RFA) will be tangent to the total metric

tensor gmn in the vicinity of the world line of the body (A). These conditions, when applied to

inertially moving test particles, are known as the Fermi conditions (Misner et al., 1973). We

would like to extend the applicability of these conditions to the case of a system of extended

self-gravitating and arbitrarily shaped celestial bodies. To do this, let us recall that the relation
(/oc) r p

for the local gravitational field gmn (YA), which is based on the decomposition eqs.(4.13), may
be given as follows:

g(,OC)(.,p _ = ,7(mO)(ypA) ÷ HAn(yPA). (5.1)rnn _YAJ

Then the generalized Fermi conditions in the local region of body (A) (or in the immediate vicinity

of its world-line _A) may be introduced by equations (3.26) as follows:

= + °(tY 12)' (5.2a)

k p = + o(ly E), (5.2b)Fmn(YA) "_A Pk(/°c)

where the quantities Fem(t°c)(_A) are the Christoffel symbols calculated with respect to the local
(/oc)

gravitational field gmn (_A) given by eq.(5.1). These relations summarize our expectations based

on the Equivalence Principle about the local gravitational environment of self-gravitating and

arbitrarily shaped extended bodies. These conditions enable us to separate the local gravitational

field from the external gravitation in the immediate vicinity of the body (A). This separation

is possibly due to the remaining arbitrariness of the transformation functions KA, LA, and Q_.

The conditions of eqs. (5.2) will give the differential equations for these functions, the solutions of

which will correspond to the specific choice of the background inertial space-time in the proper
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RFA.To obtaintheseequations,oneshouldsubstitutethe relationsfor themetric tensorin the
form (4.11)in the expressionsfor the Christoffelsymbols(F2) andthenmakeuseof conditions
(5.1).

5.1 Finding the Functions KA and Q_.

5.1.1 Equations for the Functions KA and Q_.

To obtain the equation for the function KA, one should substitute into conditions (5.1) the

relation for the component F°0(_A) of the connection coefficients given by eq.(F2a). This will

give the following result:

-2vA°evA°l_ _A
\ OYA B_A

The components F°a(_A) and F_O(_A), which are given by eqs.(F2b)and(F2d), correspondingly,

will provide us with the following equation:

B_A YA

(5.4)

From the components a pFzu(yA) of the connection coefficients that are given by eq. (F2f), one may

obtain the first equation for the function Q_:

YA YA BCA _YA

The components F_Z(_A) of eq.(F2e) will give the second and last equation for the second
unknown transformation function:

_2

_ 0 _ ÷ V_4o aAo_÷

BCA YA UYAa YA

(5.6)

5.1.2 The Solution for the Function KA.

In order to find the solutions to the differential equations above, let us first denote the limiting

operation from expressions (5.2) for any non-singular function f(_A) as follows:

(f)0 -= lira f(yOA,Y_A) = f(yO, y_) 7A" (5.7)I_AI--'0

It is important to note that operation (5.7) commutes with the time derivative but not with the

spatial derivative.
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Then,usingthis newnotation,wemayformallyintegrateeq.(5.3)overtime yO as follows:

0 0 v 1 t,
[_.oKA(YA, YA)+-_VAo,VAo - _ UB(yOA,Y'A)] = (1A(Y_), (5.8)
Loy A B#A "IA

where _IA is an arbitrary function of the spatial coordinates y_. To continue the solution, let us

recall the relation for the function KA given by eq.(Chb) in the following form:

K ALo](yOA,Y_A)= PA (y OA)-- VA[o]_(yO ) . Y_ + O(c-4)y O, (5.9)

where the subscript ([0]) denotes that the operation (5.7) was used to derive the result (5.9) for

the functions KA and VA[0]. One may notice that the dependence on the spatial coordinate in

this relation for KA disappears completely on a world line of the body, so the function _IA(Y_t)

is a true constant, i.e., _IA(Y_) = _IA = const. Then, from these two relations, (5.8) and (5.9),

one may obtain the differential equation for the function PA(yOA) as follows:

0 d o \ /(UB_° 1 ZoyoPA( °) = PA(YA)= Z -  VA,o  Va oj+  IA. (5.10)
B#A

If we formally integrate this last equation over time yO and for the function KA; we will obtain

the following final solution:

y0 -- _VA[o 1,_ A[o l
B_A

--VAlois" Y_A+ O(c-4)Y °. (5.11)

Equation (5.4) provides us with the usual relation for the Newtonian acceleration as of the
A[0]

center of inertia of a body (A) as follows:

A o, o%Z}o+
B#A

(5.12)

Thus, we have obtained the form of the first transformation function KA, eq.(5.11), which

describes the Newtonian corrections to the proper time yO. These corrections should be made in

order to take into account the external gravitational field and the Lorentzian time contraction

caused by the motion of the origin of the proper RFA with the velocity v _ relative to the
A[01

inertial barycentric RF0. This correction was first obtained by D'Eath (197ha,b) by the method

of matched asymptotic expansions while studying the motion of black holes. In astronomical

applications for the relativistic VLBI measurements, this effect was independently obtained and

studied by Hellings (1986). The only new term in the expression in eq.(5.11) is the constant

_A which is the free parameter entering the post-Poincar6 group of motion. This parameter

represents the possibility of the time shift in proper RFA and is responsible for the energy

conservation in the immediate vicinity of the massive test particle moving along the geodesic.

The acceleration, eq.(5.12), is the contribution of the monopole into the equation of motion of

the extended body. The contributions of the other multipoles to the results in (5.11) and (5.12)
will be obtained and discussed further.
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5.1.3 The Solution for the Function Q_.

The solution for the function Q_ requires slightly more sophisticated calculations. One may

expect that the function Q_ behaves at least quadratically while approaching to the origin of

the body's world line (i.e., Q_ ,,0 y_,yV, f(yoA) ' where f(yOA) is some time-dependent function).

Let us look at the solution to the equation (5.5) for the function Q_ in the following form:

• • + f_A(YA,YA),
BCA

(5.13)

_A(YA, YA) behaveswhere cl and c2 are the constants, unknown for the moment. The function a 0

linearly in the vicinity of the body's world line: f_'_A_YA,[" 0 YA]"u _ _ y_ • f(yOA). By substituting the

expression of eq.(5.13) into equation (5.5), we will find that these constants are Cl = 1 and

c2 = -1/2 and that the function f_ should satisfy the equation

02 _a _ 0_ _ A_YA,Y_)=0. (5.14)
GYAClY A

By making use of these results, we may write the solution to eq.(5.5) as follows:

Q_(yo,y_)=_ Z [Y_Y_/°uB\ 1 _ _ /ou_ 1 _ o
B_ ,-5-_y_/o-5_ YA_Y_'\_/o j +aA(YA,Y_)

(5.15)

Further calculations require somewhat more sophisticated approach. After some algebra, eq.(5.6)

might be rewritten as follows:

[_A _ 0 _, 0 _, V_, o@gQ_A (yO, y_,)+_'y_--_Q.4(y ,y ) +
cJy A _A

B_A

By integrating equation (5.16) over time yO, we obtain

= v(_-_). (5.16)

_A U o 1]
-A<2>(y_,y_) = [VAoaVAo_+ 2_a__ B(YA,YA)+gaff

B#A

_"-_ _ 012 _ ] _A A
+_au-z-_QA(Y ,Y ) +_u Q_(y0, yu) = = const.

YA _A

Then the function f_ from eq.(5.15) may be represented in the following form:

(5.17)

_,o _, _ 5--_.(u_)°
BCA

1 a .y_ + F_(Y°A,y_), (5.18)
-- _VA[o] VA[o]

where F_ is some unknown function. By substituting the expression of eq.(5.18) into eq.(5.17),

we will define the function Q_ as follows:
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X -
B#A

1 a o
2 V_4[°lVA[°IZ"Y_A4- F,_(yA, Y_A), (5.19)

with the condition on the function F_(y °, y_):

a v 0 v 0 v 0
7v3-_:7"dF_(YA, YA) + 7va_.._F_(YA, YVA)= A (5.20)

_'VA OYA

From the expressions of eqs.(5.6),(5.18), and (5.20), one may write the equation for the function

F_ in the vicinity of the body's (A) world line as

c, o 1
--F_(yA, Y_A) = _[a_4iolVAtoi_--v_4lolaA,o)9 ] +2 _ [{OaVB3>o-

B#A

(O_V_}o]. (5.21)

This last equation, eq.(5.21), may be solved together with eq.(5.20) as follows:

y0o '_t,r&aI_ v_l (#_VZB1
B#A

+ _ ° (v°), (5.22)f_._" y_ + WAto,

where the constants aAa3and f_A are connected as j_Aa3+ J_orA= aAaz. The time-dependent function

w aAIol(yO) is unknown at the moment.

Finally, by collecting the obtained relations from eqs.(5.19) and (5.22), we will obtain the

final solution for the second transformation function, Q_, as follows:

Q_AtoI(yOA,Y_A)=- _ [y_4y_A /OUB\ 1 _o 3 /OUB_ (UB}o]
B#A " \ cOY_A /0 -- 2"/ YAf3YA" \_yaA /0 4- Y_4" 4-

L2 Alol AIoi + 2 _ B'/O J-
B#A

1 o, •Y_A+ f_z Y_+ o, (VOA)+ O(c-4)y_+ O(ly,_lS).
-- 2 VAIo] VA[°]/3 ' WA[0I

(5.23)

Thus, we have obtained the second transformation function, Q_, which is the first func-

tion to describe the post-Newtonian coordinate transformation to the proper RF of a moving

massive monopole body. The only function that is still unknown in expression (5.23) is the
Thisfunction w a which defines the post-Newtonian correction to the radius vector YA[0]A[o I ,

time-dependent function will be obtained later. Besides the usual Lorentzian terms of the

length contraction (caused by the velocity of motion of the coordinate origin), the expression

above contains terms caused purely by gravity. The first two terms are due to the acceleration

67



of the properRFAcausedby theexternalgravitationalfield. The third term is the lengthcon-
tractioncausedby theexternalgravitationalfield.The fourth term with the integralsignis the
generalizationof the expressionfor geodesicandThomasprecessionof the coordinateaxis (see
Thomas,1927).A similarexpressionwasobtainedby D'Eath (1975a,b).In astronomicalprac-
tice,this resultwasintroducedbyBrumberg& Kopejkin(1988)(seealsoRieset al., 1991; DSX,

1991). The obtained relation is different from the previous results in that it contains a general-

ized representation of the term containing the precessions. In particular, the obtained relation is

defined explicitly and does not contain an arbitrary multiplier q as in the Brumberg-Kopejkin

method. This suggests that the precession term should always be present in the expressions
for the coordinate transformations and neglecting this term will correspond to the RF, which

is deviating from the geodesic world line even for the massless test particles, and will lead to

the SEP violation. In addition to this, expression (5.23) has an arbitrary group parameter f_Z.

This parameter represents the angular momentum conservation law at the immediate vicinity of

the world line of the body (A) in its proper RFA. Besides this, we have studied separately the

post-Newtonian part of the radius vector of the body (A), w aAiol,which was never done before.

The contributions of the other multipoles to the result in (5.23) will be obtained and discussed

in the next section in a manner similar to the case of the function KA, (5.11), and the Newtonian

eq.m., (5.12),.

5.2 Finding the Function LA.

In this subsection, we _ll consider the problem of finding the function LA, which is the last

unknown function for transformations (3.5). This function corresponds to the post-Newtonian

correction to the transformation of barycentric time to time in the proper RF. As we shall see,

this function will depend on the model of matter distribution taken to describe the internal

structure of the bodies in the system. In contrast to the functions KA and Q_, the analog of

the function LA has never previously been obtained, which makes the results here particularly

interesting.

5.2.1 Equations for the Function LA.

The relations in (F2) and conditions in eqs. (5.1) enable us to obtain the equations for the function
0

LA. Thus, from the components Fa_(_A), which are given by eq.(F2c), we will have the first
equation for this function as follows:

(9 2

)

2 0 VA_ 0 _,

+ E (2"f_A_O ._)_,vB[yAO' Y_A) + _ctA--_y_A B_YA, YA)--
B#A UYA

0 ")'A
=oyo

(5.24)

The second necessary equation may be obtained from the expression for the components F°a (_A),

eq.(F2b), by simply making use of the solution for the function KA given by eq.(5.11) and the

result of the acceleration of the center of mass eq.(5.12). This equation has the following form:
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CO e 0 1 1-100 [YA, YA) ++"_°_O-_QA(YA'Y_)+ 5 _ ,,8<4>, 0 ,
B=AA

+22. uA(y°, y_))] _, = O(c-_), (5.25)

where the function HoBo<4> is given by eq.(4.16b). From the relations for the components F_0(_A) ,

eq.(F2d), and with the help of the expressions in eqs.(5.11), (5.12), (5.17), and eq.(5.24), one

may obtain

CO 0 (9 a 0 v

--VAo _yOAK A(YA, YVA) + _yOAQ A (YA, YA)+

+4 E V_(y_,y_))] 7A = (a_'- 27a_{ A) .(OUA\\ 0---_-A/ oBCA

This last equation may be formally integrated over time as follows:

+ 0(c-6). (5.26)

O--_A ( V .--.p, 0 Y_4))--V_4O_AKA(YA, YA)+

CO a 0

+-_yOAQA(YA,Y_A) + 4 _ V_(yO, y_A)] =
B#A "rA

: S%, }0' ÷ "_ ÷ O(c-6)' (5.27)COY----YAA

where we have separated the integrating constant a_. Using the relations for the components
o p

F0o(YA), eq.(F2a), and the solutions (5.11),(5.12), and (5.27), one may obtain the last equation

for the function LA as given below:

[ _'_----_AA( CO o _ 1" (9 K o _, '2

O e o 1 HoB0<4> ) ")'A+_Ao,_yoQA(YA,Y_)+ 5 _C (_o y_) ] =
B_A

o (U.}o++_3 __/o - 2_1_•oy---_ (5.28)
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Thus, we have obtained four equations necessary to determine the last unknown transforma-

tion function LA, namely, eqs.(5.24)-(5.26) and (5.28).

5.2.2 The Solution for the Function LA.

The determination of functions KA and Q_ helps us find the solution for the function LA as

well. In order to do this, let us look for the function LA in the following form:

(5.29)

Then from eq. (5.24), one may easily obtain the unknown constants kl, k2, andk3 and the condition

on the function B A as follows:

1

kl = _, k2 = -2, k3 = 1;

0 2

oy_oy_Bf(v_,_ 4) = o. (5.30)

The unknown function B A may be determined from eq. (5.27) by making use of the expressions

of eqs.(5.11),(5.23), and (5.24). Thus, the intermediate solution for the function LA may be

presented as follows:

B:/:A

Ogs \ OU8+v " _ :_ 1 ,_, )_

B:/: A

-+-YAo[2"U_A[o] E (UB)o--4 E (V_}o- (t3_3A[o](yo)_k_Vl3A[ o] ._IA.. b

B#A B#A

_ /% . ,5-_4/o + - •s2"]+ B_(_°), (5.31)

where era is a constant, and the unknown time-dependent function B A may be obtained from

eq.(5.28). In order to do this, let us first integrate eq.(5.28) over time yO:

7O



Ia-_L,,(Y°,Y_)+-_ oy,,

+VAo.-_Voa_ACYA,_a) + "_"00

•_-a--_io,i_,"._-O--_io+

+_ .jry_.,,av, ,_,t_)o, - 2¢#.(UA)o+¢¢+vie-7). (5.32)

Then, the function B A may be determined from equation (5.32) with the help of eqs.(5.11),

(5.23), and (5.31) in the following form:

1 1 (UB _VA!ol_3Vi[ol -4-

' t" _U

ft' I, IOUA\

• VA[o I _ A{01

Finally, by collecting the results in obtained eqs.(5.31) and (5.33) together, we get the following

expression for the transformation function LA in the coordinates (_A) of quasi-inertial RFA:

L o _' = .[-_YA_SYA "\_yO A/o -- 2YAYA"
.(y.,y_) Z 1 _ <ova,, _ _ (o_v,,_)o+

B#A

rY_t ,rla[_ v;_]+.A,o,._A.j <,_L_A,o,",o,+__ (0'_')o']+
B#A

B¢a 8#A

u° 1 1+/_..{-__ <_o'o<'>>o.-_(_<_.>o.--_>o,..;,o,+_;)'-
B:/:A B:/=A

-_.,o,.-._,o,(<_+(-:_-'_'_#)S"'"<°_'_<.o,,S...,<..<o_._o_.o...+

t' ,, OUA (...9(C-6)yi + O(ly._l a)+_¢- '_;"<U.>o.+< "i " <<>o..]+ (5.34)
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Thus, we have obtained the last function, LA, for the post-Newtonian transformation in the

WFSMA. Notice that this function is the only one that depends on the model of matter chosen

for description of the bodies in the system through the term HoBo<4>. This function contains

two new parameters of the group of motion, namely: the parameter _A which is the extension

of the Newtonian parameter _A on the post-Newtonian order, and the parameter a_, which

represents the time-dependent Poincar@ rotation. The function LA demonstrates the non-linear

character of the obtained group of motion. This non-linearity is due to the interaction of the

proper gravitational field of the body (A) with the external gravitation. Thus, the Newtonian

potential UA and its gradients influence the dynamic of the proper RFA in the case when some
(41 , 42, aA, f,_) are not zero.of the parameters from the ten parametric group A A. a.

It is worth noting that some parts of the expression (5.34) were obtained by D'Eath (1975a,b),

whose method has been used in the Brumberg-Kopejkin formalism (Brumberg & Kopejkin,

1988a,b). However, this is the first time the function LA has been obtained in the form of the

expression above. This function describes the post-Newtonian corrections to the proper time and,
besides the usual Lorentzian contributions, it contains the purely gravitational terms caused by

the external gravitational field. The only unknown function in this expression is the function

W_tol , which will be discussed in the following subsection. Let us mention that knowledge of the
function LA will be required for analyzing the results of the proposed post-Newtonian redshift

experiment planned for the Solar Probe mission (Anderson, 1989). This effect on the necessary

accuracy was studied by Krisher (1993), who had formulated the frequency shift of the spacecraft

clock to the order of c -4. However, his formulation appears to be very simplified and does not

include the dynamical effects due to proper accelerated motion of the spacecraft in close proximity

to the Sun, which is the crucial phase of the experiment. We believe that the correct derivation

of the corresponding effect should be based upon the relativistic theory of the astronomical RFs,

so that the function LA, (5.34), will provide one with all the required corrections, including both

kinematical and dynamical effects. Moreover, in Section 7, we will obtain the parameterized form
of this function which will enable one to include in the analysis alternative tensor-scalar theories

of gravity.

5.3 Equations of Motion for the Massive Bodies.

By finding the form of the function LA, we determined almost all of the functions for the coordi-
nate transformation between RFs. However, one quantity still remains unspecified: the function

w a in expressions (5.23) and (5.34). This function might be obtained from the last unused
A[0]

equation, namely eq.(5.25). By substituting the relations obtained for functions KAandQ_ given

by eqs.(5.11) and (5.23) into eq.(5.25), and making use of the expression for the function LA

given by eqs.(5.34), one obtains the following ordinary differential equation for the last unknown
function w a :

A[o]

_)aAio](yO)__ E \(l--'_aa/u_002\ OyaA }0 + VAI°I\ 0-_A/0-- 4/-_-Y_ )o)-
B¢A

Y_t' r l [a _]+aA{01_ [_ aA[0}VA[01

1 a a z + a _ (Us}o+
--'2VA[olVA[o] _ Aio I aA[ol

B#A

/ ouA \E sx +
B¢A

(5.35)
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Wemaycheckthat thisequationis thepost-Newtonianpartof theaccelerationA m of the center
A[01

of the field of the body (A) with respect to the barycenter written in its proper coordinate system.

If we perform the coordinate transformation from the coordinates (_A) of the proper RFA to those

(x p) of the inertial barycentric RF0 of all the functions and potentials entering in eq.(5.35), we

obtain the well-known geodesic equation for the test body written in coordinates (x p) of the

barycentric inertial RF0. To do this, let us first combine the two parts of the acceleration A m
A[0]

as follows:
•.c_ 0ASA_0j(yO)= asAto_(yO)+ WAEo_(YA)+ O(c-_), (5.38)

where the terms in this equation are given by relations (5.12) and (5.35). Then, by using the

transformation rules from Appendix E, we may obtain the following result for acceleration A m
A[01

transformed into the coordinates of the inertial barycentric RF0:

S: (l -- --4E
B@A B'#A

el ),
-3v_[01C%UB (x p) - 4VA[o] "VA[0] c_AU B, (X p) -- 4_0 V/_ (XP)-_ -

-I-4VAIolA(o_aV1_(xp) - cOAV_3(xP) ) - 2Cga_21B(Xp) -- 2Da_22B(XP)--

_ I_3 _ A-°_,,(_) - 3o°¢_(_) + _o_.o_o_(_) _ + V(c-°), (5.37)

where the quantities in the right-hand side of this expression are taken at the world line of the

test body (A). Equation (5.37) is the usual form of the geodesic equation (Will, 1993; Brumberg,

1991) in the coordinates of an inertial RF0. This result proves the previous conclusion that

relation (5.35) is also the geodesic equation, simply written in the coordinates of the proper

quasi-inertial RFA.

5.4 The Proper RF of the Small Self-Gravitating Body.

In this subsection, we will discuss the transformation functions for the massive rotating test
body with the small proper dimensions obtained in the previous parts of this section. In order to

do this, let us note that the generalized Fermi conditions, eqs.(5.2), involve the first derivatives

from the metric tensor, which gave us the differential equations of the second order on the

transformation functions KA, LA, and Q_4. The expected form of the post-Newtonian expansions

of the metric tensor in the proper RFA, which resulted in condition (B3a), enabled us (with the

help of conditions (5.2)) to obtain the complete solution for the function KA. However, the

functions L and Qa were only defined up to the second order with respect to the spatial point

separation, namely: LA, Q_4 "" (-0(lY_I3) • This means that the arbitrariness due to the highest

orders of the spatial point separation caused by the multipoles of higher orders than quadrupole

(k > 3) should be included in the expressions for these functions. Taking these notes into account,

we should include in the final expressions for these functions the higher-order terms with respect

to the spatial point separation. Then, the solutions for these functions, presented by relations

(5.23) and (5.34), respectively, should be extended as follows:

k

O_o_(yo,y_)= _ oQA[oI(YA'Y_4) q- E c_ 0 y{L}QA{L}(YA)" -t- O(ty_lk+l),
l>3

(5.38)
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k

Atoi(yA, YA) LAEoi(yOA,y'j) + _-_ LA{L}(yOA) . Y{AL} + O([y_'AIk+l). (5.39)
1>3

As a result, the post-Newtonian dynamically non-rotating coordinate transformations from

the coordinates of barycentrical inertial RF0 to those of the proper quasi-inertial RFA will take

the following form:

x o = yO + c-2KA[oI(yOA,Y_A) + C-4_A[oi(yOy_A) + O(C-6)yOA,

The transformation functions KA, Q_4, and LA are given as follows:

.<.,,o,(,,o,,,._):/_,,[_ <U.>o,, .-- 7VA[OlvVA[ol + (t] -- VAioIu " YUA + O(C-4)Y O'

By£ A

(5.40a)

(5.40b)

(5.41a)

f"j+,r1.E. _1 <aI_v_l 1
B_A

k

+s],'_ y_+ _,_o_@o)+ F_, _ o y_ O(c-%_,• _ QA{L}(YA) " + O(lY_I k+_) +
l>3

B_A

+vAt0_[y_y_._0UB\ 1 _ _, /OUB_]_+,,T_/o- __' YA"_'_\ oE_-#_/oJ,'

+VAiolnYA_l_t 'r la[_ vn]L_ .',,o,.,,,o,+_ E (°[_'v_l)o,]+
B#A

(5.41b)

+YA_[2V_[o, E <Us)o- 4 _ <V_)o - Zb3AioI(yOA)+VnAIo].QA+
B#A B#A

+g_A -- VAlo]i •s_+(_>__¢:) i%,.,_'o_+_°_"x,_

+I%'[-_ <_.>o,-_(_ <_',,>o,-_..,o,'..'.,o,+_:)<
B#A B#A

-_.,o,._,o,(_')+(_ - _"%_) ,, or. +• /' <_>o.,r''"_°u'_j \ OyxAIo,,,

t' ,, OUA<_-'_,"<_">o,+',_I"<_>o,,]+
k

+ __, LA{L}(yOA).y{A L} + C0(ly_l_+_)+ 0@-%
l>_3

(5.41c)
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with the equations for both time-dependent functions YA[0] (yO) and a 0a WA[0 ] (YA) defined by equations
(5.12) and (5.35), respectively.

At this point, we are ready to present the general form of the metric tensor in the proper

RFA defined with the generalized Fermi conditions. Thus, by substituting the solutions obtained

for the functions KA, LA, and Q_ into the general form of the metric tensor gmn(yPA) in a proper

RFA given by the relations in eqs.(4.11), we will obtain this tensor in the following form:

goO(YA)= 1 2
- US(YA,BA)- Z LYA\_Io +

B_A

- z_B _A _ '0+<w_>0] +

,5 ,_ ["t'_a _ _ 0 " .OUB\ 4(0V8_\ _1
B#A ,YA

a 0 . a &A_L}(_A)).y_L_+0.

yo t'

+(_ - 2._._¢)(_A.. _ovA _ , ova ,, ova+f., i., +
yO

f A tI(gUA

+c,_.J dtt_}O,--2(;.{UA}o+O(lU_AIk+')+O(C-6), (5.42a)

A p ( r u/OV_\ , )goa(YA) =i'Y_, ___,V_(y°,yD - Y_ [yA\-O--_y_/o+ (V_}o] +_'N -
B BCA

1 _ _ 0 /OUB\+
--'_ (.'cl<_ "{- ^/clA_ -- "{e_(_) YAYA " Z _yO A \ Oy_A /0

BCA

-'1"-Z ("TaA (JY_A QA{L}(YA)"F [LA{L}(Yl)-1-TJA[°]_3"QA{L}(YA)]_Y_ ) " -'1-
l_>3

+_i<_u(cr__ - 2"?'_¢ A) fY°mdt'(OO_A}O,+ O(lY_l k+l) + O(c-s), (5.42b)

B#A

k

_ _ o o _ O(c-4), (s.42c)
-k- Z ('Tc_AQA{L}(Yl) +"[_3AQA{L}(YA)_y_) " + o(141_+b+

1>3 OVA

where the subscript (A) for the components of the metric tensor specifies that this tensor was ob-

tained by making use of the specifically defined transformation functions (5.41). The expressions

for the functions WA and WB were obtained by substituting the solutions for the transformation
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functions into the relations for H A<4> and HoB0<4> given by eqs.(4.14) and (4.16), correspond-

ingly. These functions have the following form:

I O_OA2XA (YPA)+ 2a_4[oI " O-_ XA (YPA)-[-

d3ylA PA(YA,YA) B(YA, YA))++2E lye- 0 u 0
B_A

k YA

_f_Z 02• _ _xA(y°, y_) - 2;_A.uA(y°, yR)+ o(]y_l_+_)+ CO(c-6). (5.43_)
COYAOYA

1 02 .,_. _ 0 (9 o

w_(_) = uB(_) _ u_,(_) + v,_(_) + _o-b-y-_x_) + 2%o3(YA)_X_(Y_,Y_)--
B'¢A

d3_ !

B t

I{L}_
k , 0 0 cO --YA

1_>3

_f_ . (92 o u y o _ O(c-6)- _CO _ XB(yA'yA)-2¢_A" B(YA, YA)-t-O(ly_AIk+I)-b
_YA YA

(5.43b)

Expressions (5.42) are the general solution for the field equations of the general theory of

relativity, which satisfies the generalized Fermi conditions, eqs. (5.2), in the immediate vicinity of

body (A). This solution reflects the geometrical features of the proper R.F A with respect to the

special properties of the motion of the k th multipoles of the unknown functions LA{L}(yOA) and
u 0

QA{L}(YA) for I >_ 3, which will be discussed further•

The transformation functions in eq.(5.41) correspond to non-rotating coordinate transforma-

tions between different RFs in the WFSMA. They were obtained by applying the generalized Fermi

conditions in eqs.(5.2). The set of the resulting formulae, eqs.(5.41) together with eqs.(5.12) and

(5.35), represents the generalization of the Poincar_ group of motion to the problem of practical

celestial mechanics. The arbitrary constants (A "-_ C-2( A -]- C--4( A, O'_, and f_Z correspond to the

maximal number of Killing vectors (M = 10) in the background pseudo-Euclidean space-time,

and the expressions (5.40)-(5.41) represent the ten-parameter group of motion constructed for

the dynamic of the celestial bodies in the WFSMA. The non-zero parameters describe the shift

of the origin of the coordinate system, the constant spatial rotation of the axes, and the rela-
tivistic Poincar6 rotation. These parameters represent the offset of the origin of the coordinate

system from the center of the field of the body under consideration, which may vary from body

to body. Moreover, these parameters lead to the appearance of the proper gravitational potential
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UA and its gradients OaUA in the function LA (5.41c). A contribution of this sort could be a

useful tool for some practical applications of the atomic time comparison (Brumberg, 1991a).

This dependence indicates the fact that the constant part of the proper gravity of the body

(A) is also affecting the definition of its world line. This contribution may be neglected if one

will choose these constants in such a way that this influence of the proper field will vanish. In

addition, let us mention that the component of the metric tensor gA also becomes dependent

on these quantities describing the proper gravitational field, which violates the conditions on

the metric tensor and the coordinate transformations to the proper RF A given in Section 1.

Therefore, without losing a generality, in our future calculations, we will eliminate this offset and

will set all of these parameters to be zero:

;A = + = =/]z = 0 (5.44)

In order to find the unknown functions a 0QA{L}(YA) and LA{L}(yOA) up to the k th (h > 3) order,
one should use the conditions that will contain the spatial derivatives from the metric tensor of

the (k - 1) order. Moreover, one expects to obtain the recurrent formulae that would connect

the features of transformation of an arbitrary k th term with those for the previous (k - 1) terms.

Thus, following Synge (1960), one may want to apply some non-local geometrical constructions,

such as Jacobi equations (Manasse & Misner, 1963) or both Jacobi equations and the Fermi-

Walker transport (Li & Ni, 1979a,b). However, these constraints generally are not related to the

particular theory under consideration, so their application should be justified for the particular

theory of gravity under question. Another method is to use the 'external' multipole moments

as they were defined for the gravitational wave theory by Thorne (1980) or Blanchet & Damour

(1986, 1989). Indeed, one could show that the functions a 0QA{L)(YA) and LA{L}(y 0) in the WFSMA

may be chosen in such a way that the metric tensor in a proper RFA, eqs.(4.11), corresponding
to this choice will accept the desired form. The presentation of the transformation functions in

terms of the 'external' multipole moments simply corresponds to the specific RF for which KLQ

dynamical parameterization is strictly defined by this choice.

5.5 The Fermi-Normal-Like Coordinates.

As we noticed above, in order to determine the metric up to the k th multipole contribution, one

should apply some additional conditions that enable us to define the specific properties of the

reference frame with which we will be dealing. For example, we might obtain these functions for

the case of the motion of the monopole test particle up to the second order of a spatial point

separation. Assuming the motion of that particle is described by the geodesic equation and the

deviation of geodesics is governed by the Jacobi equation, we might easily obtain the metric

tensor in the generalized Fermi normal coordinates (Misner and Manasse, 1963; Li & Ni, 1979;

Dolgov, Khriplovich 1983; Ashby &: Bertotti, 1986; Marzlin, 1994) up to the second order of the

spatial separation and present it as follows:

B
g_(YPA) = 1 + HA (yPA)+ (I_,o_,)O " Y_YY4 +O(c-6) + (9(]Y_13), (5.45a)

2 B

(Y'A)= (y A)+ E( ) o" + + O(lY I3)' (5.45b)

1 B
(5.45c)
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B ) are the components of the Riemann tensor, eqs.(G9), which is calculated withwhere Rrnnkl 0

respect to the external gravitational field HmBn and taken on the world line 7A of the body (A)

under consideration.

Let us mention that if the proper gravitational field may be neglected and the effects due

to acceleration of the proper RF A are also negligible, the obtained metric tensor (5.45) will

correspond to that of, so-called, Fermi normal coordinates constructed in the immediate vicinity

of the world line of an inertial observer (Misner et al., 1973). However, for the general case of

non-vanishing contributions of the proper gravitational field and accelerated barycentric motion,

the form of the metric tensor, gm_n (5.45), and the corresponding proper RF is what will be

referred to as the Fermi-normal-like coordinates. From these expressions for the metric tensor
Tgmn, one may see that, in order to obtain this form of the metric tensor, it is necessary to perform

the coordinate transformation that should contain the terms with the third order of the spatial

point separation (Li & Ni, 1979a,b; Zhang, 1985, 1986). We will obtain the necessary equations
on these functions by making use of the components of the Riemann tensor Rmnkl (_A) expanded

with respect to the spatial separation from the world line of the body (A) and then equating the

coefficients proportional to --- YAYA"

Thus, the components of the Riemann tensor calculated with respect to the external gravi-

tational field HmBn from the relations in eqs.(G9) might be presented on a world line of the body

(A) as follows:

a_uB _, a [/aue\ /avs.\ ,_]

/ 02WB \ "_ a_

)_u 0 = "/UaaAl°] "

(5.46a)

O2V_ O=VJ

B,/=A

• . O2UB / O2Us \(.o%4o= E + --B_A 7._\ oy_oy_/o

/ 02UB \ / 02UB \ "_

(5.46b)

(5.46c)

To find the necessary corrections of the third order of the transformation functions Q_ and

LA, let us look in the following form:

a 0 u
us QA[0 ] (YA, YA) =

_o . _ / 02U_ '_ oc,...), 02UB
= _ [c,.',/ yAYAuYA'\c3yaOy--'----_/o+C2"YAUAUA'(Oy_c3y_)O] +O(]y_A[4), (5.47a)

B#A
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_uanAIo] (yOA'y_4) = E [ql'Y_4BA#Y_< _2U_ # v A/ 02VBA

--VA[o] _" _3 Q_A[0 ] (yO, YYl) -[- (_0([y_ [4),

where the constants cl, c2 and ql, q2 are unknown at the moment•

(5.47b)

The expressions for the components of the metric tensor g_mn, eqs.(5.45), and those for the

Riemann tensor, eqs.(5.46), will enable us to obtain the equations for the determination of the

constants Cl,C2 and ql,q2. Thus, from the component g_, eq.(5.45c), and the relation for the

<R_B / 0' eq.(5.46c) : we will have

1 1 1

2c1+1= _, 2c2= 3' 2(c1+c2)=-5,

which will give the following values for these constants:

1 1

Cl =--5' C2 = _. (5.48)

Analogously,from the component :r eq.(5.45b)-the relationfor <R0_oaB >o,goa, , eq. (5.46b); and

the solution for function b.3Q_iol given by eq.(5.46a), with the obtained cl and c2, eq.(5.47), we
obtain

2 1 2 1

2q1-1= 3 q1+2 3 => ql= _,

4 4 2

2q2 = 3; q2 + 2 3 _ q2 = -5" (5.49)

Taking these results into account, the corrections up to the third order with respect to the

spatial point separation to the solutions for Q_ and LA, presented by eqs.(5.47), will take the

following form:

_QAtoJ(y°'y_) = -_ _ V yA_ _A --
B#A \ c3YvAOY_4/ o

o_ .o_, / 02UB \]
-2.._AYAYA \ Oy_Oy----_A/0J + O(lY_I4)' (5.50a)

1 p A

>o)-

\ c3y_4c3y_A/o \ Oy_ay_

By substituting these solutions into the expressions of eqs.(5.42), one might get the metric tensor

in a proper RFA of the moving extended body (A) with accuracy up to the second order of the

spatial point separation. Thus, assuming that all the integration constants satisfy eq.(5.44), one

may get the following form of the metric tensor in the generalized Fermi normal coordinates:
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g_(_) = 1- 2UA(@+ 2WA(_)+

a_u_ ._ / a_w_ a . .au_\ 4(avs,_ ]]+÷(_E[-<_,o ÷,o_ >o÷_ <_<_o- _-_,o,_

a_ _ .).y_y_+ O(c-6)+ O(ly_IS),+%'#u aA[o]), A[o] aA[0] t_aA[0l

_2vA

g[a(_A) = 40'aeV].(_A) + _ [ <CgYAOyA O_, )0] +
B#A

+7..aAEo_- 7.-aAEo_o)"Y_Y_+ O(lY_I3)+ O(c-9,

(5.51a)

(5.51b)

- - a2UB \ 7,,_( (92us
ay_ay_B#A

/ a_u_ a_us \]] ,_ (5.51c)

Thus we have obtained the form of the metric tensor in Fermi-normal-like coordinates and the

coordinate transformation, which leads to this form as well. These transformations are defined

up to the third order with respect to the spatial point separation.

A more detailed analysis of the coordinate transformation for the extended self-gravitating

bodies will be performed in the next section.
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6 General Relativity: The Proper RF for the Extended Body.

In this section, we will generalize the results obtained for the relativistic coordinate transfor-

mations (5.40) and will extend their applicability to the problem of motion of a system of

N extended bodies in the WFSMA. The relations (5.40) were obtained by using the generalized

Fermi conditions (3.26) and, hence, they are well suited to describe the motion of the system of

N self-gravitating bodies, omitting only the lowest intrinsic multipole moments. To generalize

these results in the case of arbitrarily shaped extended bodies, we must use the more general

definition of the proper RF given by expressions (3.29). This definition is based on the study

of the existence of integral conservation laws for metric theories of gravity, (3.28). The studies

of the existence of the conservation laws in general relativity were performed by a number of

scientists, notably by Fock (1955) and Chandrasekhar (1965), whose methods were developed

in application to the motion of the more general N-body systems in the framework of the PPN

formalism (Lee et al., 1974; Denisov & Turyshev, 1989; Will, 1993). It should be noted that the

search for the conservation laws in these methods was performed in the barycentric inertial RF0

and, in particular, it was shown that general relativity in the WFSMA has all ten conservation

laws for the closed system of fields corresponding to energy of the system, its momentum, and

angular momentum. The difference of the present research from that cited above is in the fact

that we will study the problem of existence of the integral conservation laws in an accelerated

arbitrary KLQ-parameterized proper RFA. As a result of our study, we should find the condi-

tions necessary to impose on the transformation functions KA, LA, and Q_, so that the general
relativity in the coordinates of this RF will preserve the existent conservation laws for the entire

system under consideration.

6.1 The Extended-Body Generalization.

It is well known that in all metric theories of gravity the Lagrangian density of matter is the same

functional of metric of Riemann space-time gmn and the other fields of matter _A. Then the

application of the method of infinitesimal displacements (Bogolyubov & Shirkov, 1984; Logunov,

1987) to the action function of matter in these theories, together with the condition that the

eq.m. for the fields _)A are satisfied, leads to the same covariant equation for the conservation of

density of the energy-momentum tensor of matter in Riemann space-time:

Vk:[ _mk = OkT 'nk + F_p:Flp = O. (6.1)

Note that this result is independent of the choice of RF. In the case of a system of bodies formed

from an ideal fluid with the individual density of energy-momentum tensor _nn of an arbitrary

body (B), which is given in the coordinates of its proper RFB by the expression (2.1) as

the total density of the energy-momentum tensor of the system of N bodies in the coordinates

(_A) of the proper RFA of a particular body (A) may then be composed as follows:

B

where ors is the Jacobian of the corresponding coordinate transformation:

JB(YPA)---- detll_---_A •
(6.2c)
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In addition,fromequation(6.1)for anidealfluid model,(6.2),wemayalsoobtainacovariant
equationof continuity in the coordinates(_A)asfollows:

B

(6.3)

where V A is the covariant derivative with respect to metric tensor gA n of the proper RFA. The
total conserved mass density of the entire system in coordinates (_A) is denoted as

d 0-1 YB
= =

B B

(6.4)

where jSB is the conserved mass density of the body (B) and all the quantities on the right-
hand side of this expression are transformed to the coordinates (_A) using the standard rules

of relativistic transformations of the mechanics of Poincar6 (Fock, 1955). Equations (6.1) and

(6.3) together with the metric tensor give all the expressions necessary for the construction of
the eq.m. of the extended bodies composed from ideal fluid and for analysis of various general

questions.

In order to generalize the results obtained in the previous section, in the case of arbitrarily

composed extended bodies, we shall first construct the components of the density of the energy-
momentum tensor of matter _mn to the required accuracy. Thus, from the definition in (6.2),

one may get these components in the Newtonian approximation as follows:

= +o(c-2)), (6.5a)

TOc'(_A ) = _vC' (1 + (--0(C-2)), (6.5b)

(6.5c)

As a result, the covariant conservation equation (6.1) for m -- a transforms into the Euler

equation for an ideal fluid, while for m = 0 it transforms into the equation for the internal energy
H of the local fields in the vicinity of the body (A):

dye --fiaa-U + Oap + -fiOaO(c-'t), (6.6a)
-fidy---ffAA =

dH -pa_v _ + _O(c-5), (6.6b)=
where the total time derivative with respect to the proper time yO is given by the usual relation:

d/dy ° = 0/0y_ + v_0/0y_. The total Newtonian potential of the system in these coordinates

was denoted as U(_).

In order to apply the conditions (3.29), one must substitute the expression for the total

Newtonian potential U into (6.6a) and integrate this equation over the body (A)'s compact

volume. However, if we do so for the potential from the solution in (5.42), the conditions in
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(3.29)will not besatisfied.Indeed,the total NewtonianpotentialU[0] may be identified as the
terms of order c -2 in expression (5.42a) for the g00 component of the metric tensor as follows:

YE01= EuB( Ly:)- E [ Ato--K )o+
B BCA

(6.7)

If one substitutes this potential into equation (6.6a) and integrates the resultant expression over
the body (A)'s compact volume, one obtains

Al° BCA \O-- A/0J+ O(c-4) # 0.
(6.8a)

By expanding the integrand in the expression above in the Taylor series with respect to the

spatial deviation from the supporting world line _A which is given as )_A "" ffA/lYBAo[), one may
bring this result to the following form:

k I_;(o{L+I}UB f_3 ,^ ,{L}
/ha =-Taa_-_-_'_ )o + "

A[°] B¢A l>_1 Z. ay_y{A L} ]A a y RAYA O(c-4)
(6.8b)

It is easy to see that this result does not satisfy the requirement for the 'good' proper RF even

in the Newtonian order. The origin of the RF, defined this way, coincides with the center of

inertia of the local fields in the vicinity of the body under question in one particular moment

of time only and will drift away from it as time progresses. Exactly the same situation was

encountered with the solutions in both the Brumberg-Kopejkin (Brumberg & Kopejkin, 1988a,b)

and the Damour-Soffel-Xu (DSX, 1991-1994; Damour & Vokrouhlicky, 1995) formalisms. In

both of these methods, the translational motion of extended bodies in their proper RFs does not

vanish in the Newtonian limit, but rather non-linearly depends on the coupling of the intrinsic

multipole moments with the external gravitational field. To solve this problem, the authors

of both formalisms have introduced 'external' multipole moments in order to compensate for

the terms on the right-hand side of expression (6.8b). However, this substitution may not be
considered as a satisfactory solution to this problem. The reason for this is that the authors

in both approaches were trying to describe the motion of extended bodies using methods that

were developed to treat the motion of point-like test bodies. As we already know, to overcome

this problem, we should develop a microscopic treatment of the matter, the gravitational field,

and the field of inertia in the immediate vicinity of the bodies (i.e., in their local region) in the
system.

In our method, the only step we have to make in order to the take into account the extent of

the bodies is to change the limiting procedure ("}0 defined by expression (5.7) to an averaging

over the bodies' volumes./3 We define this new procedure ("}A, which, being applied to any

function f(yP), will denote an averaging of this function over the body (A)'s three-dimensional

compact volume in accord with the following formula:

f( oI o= tA (YA)f(YA, YA), (6.9a)
mA

A 3 t _0 tp77%A = d YAtA (YA) "_- ('0(C-4), (6.9b)

13Note that this situation is similar to that from the electrodynamics of continuous media, where one has to

average the field over the body's volume (Landau gz Lifshitz, 1987).
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where_O(y_) is the componentof the conserveddensity of the energy-momentumtensorof
matter, inertia, andgravitationalfieldin the local region of the body (A) taken jointly. It is easy

to see that in the case of a system of N massive particles with the total mass density taken to be

P(YPA) = _:_B mBh(Y °, _TA+ _TBAo), this new procedure coincides with the procedure (-')0 defined
by the expression in eq.(5.7). Note that the new operation (-')A given by eq.(6.9), contrary to

that of eq.(5.7), does not commutate with the operation of time differentiation.

Because of this change, the total gravitational potential U(_A), which in the vicinity of the

body (A) is composed from the local Newtonian potential generated by the body (A) itself and

the tidal gravitational potential produced by external sources of gravity, will now have the form

r , /auo\ (UB)A]+ O(c-4)-
-U(yPA) = _--_UB(y_(yPA)) - _ LYA\-_y_A / A +

B B#A

(6.10)

One may make sure that expression (6.10) is what we need in order to have the origin of the

proper RF A coincide with the local center of inertia. Indeed, by substituting this result for the

total Newtonian potential U into equation (6.6a) and integrating the resultant expression over the

body (A)'s compact volume, one finds that ¢h_0 = O(c-4). Thus, the center of inertia of the local

fields, defined as the dipole moment of the fields in the immediate vicinity of the body (A), moves

along a straight line as given by the formula m c_ (_ o _ = Ac,+BC_yoA+(.9(c-4), where .AC'andB '_ areAo \,_tAJ

constants. One may perform an additional infinitesimal post-Galilean transformation (similar to

that of (1.12)) in order to make them vanish: _4a =/3 a = 0. This means that the origin of the

proper RFA will coincide with the center of inertia of the local fields and, hence, the constructed

frame will satisfy the definition of a 'good' proper RF discussed in Section 3.

As a result, the general form of the coordinate transformations between the coordinates (x p)

of RF0 and those (_A) of a proper quasi-inertial RFA of an arbitrary body (A) for the problem
of motion of the N-extended-body system in the WFSMA may be presented as follows:

x ° = y°A + c-2KA(yOA, Y_A)+ c-4LA(yOA, Y_A)+ O(C-6), (6.11a)

= + y 0(yo) + c-2Q (y o, + (6.11b)

where the barycentric radius vector r_o of the body (A) in the coordinates of the proper RFA is
decomposed into Newtonian and post-Newtonian parts, which are given as follows:

1 /ADS., (6.12)

The transformation functions KA, Q_4, and LA, in this case will take the following form:

(6.13a)

k

1 o, B _ o o, o ._lk+l) O(C-4)y_,___---jVAoVAoYA _ + w-W-..Ao(YA)+ _ QA{L}(YA)" Y{AL} + O(ly_A +
l=3

(6.13b)
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+ yA_ VAo_ iY_t'l la[_ vn]
B#A

+YA_[2V_Ao _ (UB)A--4 _ (V_)A----WZA0CyO)]--
B_A B_A

fY_t'[ 1 2-- E <WB}AZC 2( E IUB}A 1 _ .u ,

S#A B#A

k

+ _ LA{L}(yOA) ' y{AL} + O(ly_AI k+l) + 0(c-6). (6.13c)
/=3

One may verify that in the case of the free-falling massive test particle with conserved mass

density given as _A(YPA) = mAS(_A), functions (6.13) will correspond to the coordinate transfor-

mations to the proper RF defined on the geodesic world line, (5.41).

Note that we have changed the notation fA[ol to fAo in the new expressions, eqs.(6.11)-(6.13).
This is because all these quantities are now defined with the procedure eq.(6.9), which takes into

account the internal structure of the bodies. As a result, the Newtonian acceleration of the

extended body (A) with respect to the barycentric RF0 now is given as

[ OUB \
a_4o (yOA) = --Tc_t_ E \ _y_ / A q- O(C-4)"

B¢A

(6.14)

Furthermore, in order to take into account the extent of the bodies and the influence of this

extent on the post-Newtonian dynamics of the N-body system, the time-dependent function w aAo

has been replaced by the new function w_0:

o (6.15 )= +

where the function w a is determined as the solution of the following differential equation:A0

OWB\ ___A<US}A__4 0 a?-LA0

BCA

1 _ Z
---_VAoVAozaAo + aA o _ (US}A+

B¢A

+aAo. iY°_t'(la[AaoVJ_ +2 _ [<.{'Iv'J]}A+ <v{'O"}UB}A]) + 0(c-6),
B#A

(6.15b)

and the function 5w_o is unknown at the moment. This function will be determined later, when
we will apply conditions (3.29) in order to make the total momentum of the matter, the inertia,
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and the gravitational field calculated in the coordinates of the proper RF A vanish in the volume

of the body (A).

As a result, the 'averaged' components of the metric tensor gA n in the coordinates (_A) of

the proper RFA take the following form:

, Z f
g0%(_) = 1 - 2F + 2W + YAYA"_7.Z aAo_aAo-- aA0._A0Z+

o b__yo(A [(0(.Vs,))A +
B#A

k

o 0(c-6),+2E [OoL_{_(_°) +v_o_OoQ_{_(y_)].y?) +o(l_l_+_)+
l_>3

1
1 (YAaYA, -[- 5"/a,YA,YA)" d_Ao+9o_(_) = a _v _- g

(6.16a)

k

+E [_0oQA{_}(Y°)+ _o,
/_>3

+O(ly_lk+_)+ 0(c-9, (6.16b)

+ _ [7_QA{L}(YA)_.._ + 7z_QA{L}(y °) .y{AL} O(C-4), (6.16C)

I>_3 L oy j

where the total gravitational potential U at the vicinity of the body (A) is composed of the

local Newtonian potential generated by the body (A) itself, and the tidal gravitational potential

produced by the external sources of gravity is given by expression (6.10). This potential may

now be obtained from (6.13a) as follows:

OKA(YPA) 2 VAo.V_o =_(_) = Z aB(y_(_)) oyo
B

[ z/OUB\ + (UB)A] '_ O(C-4) - (6.17)= EUB(yZ(y_)) - E LYA\-_y_AIA
B B_A

This potential is the solution of the corresponding Poisson equation in the coordinates (_A):

02F
47rP(_A),

YA YA

which is searched for together with the following integral boundary conditions:

(U)A : _ d3yIAPA(Y_)-U(Y_ ) = /A d3yIAPA(y_)UA(y_)

(6.18)

(6.19a)

(_ -- pp

YAPA<YA) _ --0.
OYA

(6.19b)
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The quantity Va(_A) in the expressions in (6.16b) is the total vector potential produced by

all the bodies in the system as seen in the coordinates (_A) of the RFA. The averaging procedure
(6.9) enables one to define this potential as follows:

[/ov_\ / _ouB\ 1 )v_(F_)=_v_(y_(F_)) - Z _L\%_/A+kv 0-_/AJ+(V_>_ +
B B#A

1 a _ _ _.
+_(3yAyA - _ YA.YA)aAo_+ O(C-4). (6.2O)

It is interesting to note that the vector potential now depends on the coupling of the intrinsic

motion of matter in the body (A) to the gradient of the external gravitational field. Thus, it

can be seen from expression (6.13) for the function Q._ that this coupling contributes to the

corresponding precession term of the coordinates in this RF relative to the barycentric inertial

frame. This potential also satisfies the usual Poisson equation of the form

02V _

_u_'OY"OY_AA- --4_P(_A)Va(_A)" (6.21)

Moreover, due to the covariant equation of continuity, (6.3), both quantities (6.17) and (6.21)

are connected by the following relation:

0-_ OV _

oyo - %_. (6.22)

Another quantity we have introduced in expressions (6.16) is W(_A). This is the post-

Newtonian contribution to the component g00 of the effective metric tensor in coordinates (_A)
given by (6.16a). This contribution is given as follows:

r # / OWB \ (WB)A] +w(F_)= Zw_(y_(y_))- Z [y_\ _-_-/_ + o(_-9.
B BCA

(6.23a)

The solution (6.23a) repeats the structure of the tidal representation of the Newtonian potential

(6.17), so it could be considered as the generalized post-Newtonian potential in this RF. The func-

tions WA and WB in expression (6.23a) are given by relations (5.43), and they fully represent the

non-linearity of the total post-Newtonian gravitational field in the proper RFA. These functions

contain contributions of two sorts: (i) the gravitational field produced by the external bodies in

the system (B#A), and (ii) the field of inertia caused by the accelerated and non-geodesic motion

of the proper RFA. This happens due to the coupling of the proper multipole moments of the

body (A) to the external gravitational field as well as to the self-action contributions that are

given by the terms with QA{L} in expressions (5.43). One may obtain the corresponding Poisson-

like equation for this potential as well. Thus, directly from the gravitational field equation (4.4d),
this last equation will take the form

a2W

%_oyy_ -87r,(II-2v, vt"+ _) + 2_ [O_oUB+ 20_.UB(2a_Ao+ _O, Uc)]_
B C

k

-2Z Z QA{L}(yA) • +o.u8 +o(ly_ +O(c-9.
B Z>_3

(6.23b)
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Wehavenot yet presentedthelastfunctionthat is necessaryto completethecoordinatetrans-
formationfor the extendedbodies,namely:thefunction_w_ofrom (6.15).To find this function,
oneneedsto apply the procedurefor constructinga 'good'properRFwith full post-Newtonian
accuracy.In orderto do this, onemustperformthe studyof the existenceof conservationlaws
in the properRFA anddefinethe conservedquantitiesthat will correspondto the energy,mo-
mentum,andangularmomentumof the local fields. Then, after integrating these quantities over

the body's compact volume, one must find the form of the eq.m. for the extended bodies in their

proper RFs. These equations will contain the time derivatives of the only unknown function,

6W_o , which should be chosen in such a way that conditions (3.29) will be satisfied.

6.2 Conservation Laws in the Proper RF.

As we have stated before, our goal is to construct a formalism that will be useful for calculations in

a number of the metric theories of gravity. This is the reason why in our further discussion we will

use the method developed for analysis of the conservation laws in parametrized post-Newtonian

gravity developed by Fock and Chandrasekhar (Fock, 1955; Ehlers, 1967; Denisov & Turyshev,

1989; Will, 1993). It is known that the most important question for any metric theory of gravity

is the presence or absence of laws of conservation of energy, momentum, and angular momentum

for the closed system of interacting fields. Strictly speaking, the solution to this question requires

detailed information regarding the structure of each metric theory of gravitation. It is necessary

to know what geometric object has been chosen to describe the gravitational field, what geometry

is natural for it, and what is the form of the equation connecting the gravitational field and the

metric of the Riemann space-time. Using the standard methods of theoretical physics, it is then

possible to give an exhaustive answer to this question. However, such an analysis cannot be

carried out in a general form for all metric theories of gravity at once. This leaves us with only

one option: attempt to obtain some information regarding the possibility of the existence of
conservation laws in these theories by proceeding only from the eq.m. of matter in the WFSMA.

It should be noted that conditions obtained in this way are necessary but not sufficient to prove

the existence of integral conservation laws for matter and the gravitational field taken jointly in

a particular metric theory of gravitation. It is altogether possible that, although the necessary
conditions are satisfied for some theory of gravitation, there nevertheless may not be conservation

laws for a closed system of interacting fields. The reason for this situation is that quantities that

do not depend on time, obtained on the basis of post-Newtonian equations of motion, may not

have the character of integrals of motion for a closed system and hence also have no physical

meaning. Therefore, in resolving the question of whether or not conservation laws are present in

a particular theory of gravitation, the last word can be said only after a complete analysis of the

theory has been performed.

It is known that general relativity in the WFSMA possesses the integral conservation laws for

the energy-momentum tensor of matter and the gravitational field taken jointly. It means that

the covariant equation of conservation of the energy-momentum tensor of matter in Riemann

space-time, (6.1), can be identically represented as the covariant conservation law of the sum of

symmetric energy-momentum tensors of the gravitational field t_nn and matter t_ n in space-time

of a constant curvature:

VkL_mk = 0 _ :Dk(t_nk + t_ k) = 0. (6.24)

It should be especially emphasized that, since in an arbitrary Riemann space-time the oper-

ation of integrating tensors (with the exception of scalar density) is meaningless from a math-
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ematicalpoint of view, it followsthat the presenceof somedifferentialconservationequations
in this casedoesnot guaranteethe possibilityof obtainingcorrespondingintegralconservation
laws.Thepossibilityof obtainingintegralconservationlawsin a Riemannspace-timeis entirely
predeterminedbyits geometryandcloselyconnectedwith the existenceof Killing vectorsof the
givenspace-time.Namely,only anequationof the formof (6.24)guaranteesthe existenceof all
ten integralconservationlawsfor a closedsystemof interactingfields.Indeed,since,in a space-
timeof constantcurvaturetheKilling equations_:)rn_n -t-'l:)n?]rn = 0 are completely integrable and

their solutions contain the maximal possible number, M= 10, of arbitrary parameters (Eisenhart,

1926), we have ten independent Killing vectors in this case. Multiplying (6.24) successively by
each of these vectors r/k, we obtain

(6.25)

Since the left side of this expression is a scalar, we can integrate it over a three-dimensional

volume (Logunov, 1987) and obtain all ten (the number of independent Killing vectors) integral

conservation laws for a system consisting of matter, inertia, and a gravitational field taken jointly.

Thus, in general relativity, which possesses the integral conservation laws, expressions for the

integrals of motion of an isolated system can be determined also from the equation of motion

of matter, eq.(6.1). We shall find a necessary condition that the post-Newtonian expansions of

this theory in the proper quasi-inertial RF must satisfy and obtain post-Newtonian expansions

of integrals of the motion required for subsequent computation. For this we should transform

the covariant conservation equation (6.1) to the form of eq.(6.24), after which, multiplying this

relation by the corresponding Killing vectors of a space of constant curvature and integrat-
ing over the volume, we may easily obtain the desired expressions. Since the metric tensor of

Riemann space-time in the absence of matter (P0 = P = 0) should have as its limit the pseudo-

Euclidean Minkowski metric, the covariant conservation equation (6.1) should be transformed to

the conservation law (6.24) just in the pseudo-Euclidean space-time. Then in the quasi-Cartesian

coordinates of the barycentric inertial RF0, expression (6.24) will take the form

mk= + = 0 (6.261

We expect that the 'good' proper RF will resemble the properties of the inertial RF0; then in the

coordinates of this proper RF, the expression, analogous to that of (6.24), should take the form

of the conservation law of the total energy-momentum tensor of the fields of inertia, matter, and
gravity taken jointly:

Vk:l-_k(YPA)= _--_A(t_k+tgk+t_k):O. (6.27)

Knowledge of the metric (6.16) to a post-Newtonian degree of accuracy makes it possible

to determine the components of the energy-momentum tensor in the next approximation. In-

deed, using the definition for 5brnn, (6.2); the metric (6.16); the expressions for the four-velocity,

eqs.(E4) and (E13b); and also the covariant components of the metric tensor, (B5a), we obtain

the following expressions for the components of the density of the energy-momentum tensor in

the post-Newtonian approximation in the coordinates of the proper RFA:

1 o(c4)] '2b°°(_) = _[1 + YI - -_v.v ;_ + U + (6.28a)
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1 p O(c_4)], (6.28b)t°_(_) =_v_[1+ n- _v.v. + - + _ +
P

1 p _] p7_ +_'_Z(yPA) = -pv%#[1 ÷ II- _v_v _' ÷ - ÷ -
P

k

+p_ Q.{L}(_A)" 0 (6;0#+ £0" - _%)£L} + _O(_-_)+ O(b_l_+_), (6.28c)
l>3

where the total conserved mass density of the entire system _ is given by (6.4).

Furthermore, by using the solutions for the transformation functions (6.11) and (6.13), from

the expressions (F2) one may obtain the Christoffel symbols of the Riemann metric in the proper

RFA in the form

oF ou
F_0 ( _ ) -- ay_ + O(c]5) , r_ (_) -- ay_ + O ( C ] 6 ) , r _Z ( _ ) : O ( C -- 3 ) ,

r_o(_)=_°"-oy_°[G___ _] +4_°oyo5_(Y_Yi+ !_"_"")_°_2+ (6.29)

+g *
B#A ttA

k

ay_aV_k [QA{L}(yA)a_"0 + QZ{L}(yO)a.]yiL}+ O(lY_l_+_)+ O(_-6),
I>3

k

+_ . o {_} O(c-_),OoQA{L}(YA)OZYA + O(ly_l _+_) +
I>3

r_ , _, _ OG 5_ OU _o 0-0-- QA{L}(YA)#_Yn + O(lYZI_+1)+ O(c-4)"
I>_3

Writing (6.1) for m = 0 and substituting (6.28) and (6.29) into it, we obtain

0 1 (:9 [._fivU(l+lq___v;_v_+-G+ _
0yO [_(I + YI- _v_v _ + U)] + 0Y_i

aU _,a-G
--_To_ - 2-_ _ =-_v(_-_). (6.30)

Thus, to bring this relation to the form of (6.27), it is necessary to transform the last two terms

by extracting from them the partial derivatives with respect to time and the three-dimensional

divergence. Such a transformation cannot be carried out in a unique manner. Therefore, using
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equations(6.18)and(6.21),we rewritethe giventermsin the mostgeneralform reflectingthis
ambiguity:

OU OU 0 231 - 30u-UOU-_) +'P OY°A + 2pvU 0y---_A= Oy-----_A(al_-U + 8"-----_--

+ 0___0_1-al -OF a2_,,OV
o_ (--_-o"U_o + _u_o + (al+ a2)_Uv"+

+ 2 - al4rc- a2o_'-U[O_'Vu - OuVU]) ' (6.31)

where ax and 32 are arbitrary numbers. With consideration of this relation, and collecting like
terms in (6.30), we get

oo ( oo+ooOyOA tg + + + t_) = _O(C-5), (6.32a)

with the following expressions for the (00) and (Oct) components of the density of the total
energy-momentum tensor:

00 o0 1
3 - 2al OuUOuU + _O(c_4) ' (6.32b)toio+tg +tM=-fi(l +II-2vuvU +(1-al)-U) + 87r

OaOc_ ( 1 p)t°ia + t9 + t M =-fly a 1+I1- _vpv u + (1- al - a2)U + +

al-10_-G. O-U a2 __(_ O-U+

al + a2 - 2 0_[O_y_ _ O_V.]) +-_0(c-9.4_r

Writing expression (6.1) for n = a and substituting (6.28) and (6.29) into it, we have

o _ .ov(n  -vs+ v)+Oy° + Oy_ + -_°_u - -_o° w + - _p-

+4O[_yV-_n ;LtAox (y_y_ + -_7 YAYAu)
+

+-_{aa4oaAo: , --6_.aAo,a_Ao + B_#A 0--_A [2_ 0---_A_)A + 2< 0----_A)} A -- OYA"

OU
+4pvU(OuF _ - OoV,) + 2_v _ + 2pv_vUOuV+

k
-- .-a 0 2 a 0 X 0 a

+P(6WAo(YA) + _ [O00QA{L}(YA) +aAoxQA{L}(YA) 0 ]y{AL})-
1>_3

OU k k
-P0y_E [Q_{_}(Y°)0_+Q_{_}(Y°)0"]¢2}+2_v"E OoQ_{_}(y°)O.£_}+

l_>3 l>3

+(-fivUv)' _/"'_P) E QA{L} 0 2 {L}_ a (yA)Ou,xy A = _O(ly_l _+1) + _O(c-6). (6.33)
l_>3

(6.32c)

91



Onemaynote that theseexpressionsarenot dependenton thefunctionLA(L} with l > 3. This

means that, in the post-Newtonian order, the function Q_4{L} with l > 3 only is responsible for
the existence of the integrals of motion in the RFA under consideration.

To reduce this equation to the form of (6.27), we use the identities presented in Appendix H.

Substituting these into (6.33) and collecting the like terms, we obtain

d2 k

_ QA{L}(YA)YAO'0 {L} +_O(ly_lk+l) + _O(c-S), (6.34)
aYA t>3

with the following expressions for the (s0) and (aft) components of the density of the total

energy-momentum tensor:

1

+  o v[oow_ o.w]) + (6.35/

47r(t_ _ + t_ z +

B¢A ,_A l>3

/ o,_oV '_ _ _v____

1 [ eZ a fl l_.,.,[l_UYAeV_ A _Ao,.,OAU.._

k

-- QA{L}(YA)O +

I>_3

k

+_OI_UO U Z QA{L} (yA)O YA
1>_3

k

,_/3 , 0 \0 {L}
-- Oa-UO#U 2==, _A{L} kyA) uYA --

l>_3

k

-p _ Q_{L} (Y°A)O'OY{aL} + _O(ly_l'_+')+ -pO(c-_).
t>3

(6.36)

It can be shown that the expression on the right-hand side of relation (6.34) cannot be repre-

sented as four-dimensional divergence of any combination of generalized gravitational potentials

and characteristics of the ideal fluid. Then for arbitrary functions Q_{L}, the expression (6.33)
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cannotbe reducedto the form of (6.27). However,sincegeneralrelativity possessesall conser-
vationlaws,sucha reductionis alwayspossible,andit followsthat wemustrequirethat all the
functionsQ_4{L} with l > 3 vanish:

cz 0
QA{L}(YA) = 0, Vl > 3. (6.37a)

In addition to this, as we have noticed earlier, the functions LA(L} with (l > 3) do not

enter the eq.m. in (6.33) at all and any choice of these functions will not affect the dynamics of

the system of the extended bodies in the WFSMA. This suggests that these functions may be

considered as the infinitesimal gauge functions and, without losing generality of the description,
we may set these functions to be zero:

LA{L}(yOA) = 0, Vl > 3. (6.37b)

Moreover, in correspondence with the definition in (6.27), in metric theories of gravitation

that possess all conservation laws, expression (6.36) must then contain the components of the

complete energy-momentum tensor of matter and gravitational field in pseudo-Euclidean space-

time. Since below we shall mainly be interested in the components ta° of this tensor, comparing

0o 0_ t_x02_÷00 2_÷a0the expressions for it given by (6.32c) and (6.35), we can see that t°a+tg +t M # . _g To M.
Therefore, although it is possible to obtain the conservation laws of energy and momentum, it

is not yet sufficient for obtaining the remaining conservation laws for which it is required that

the components of the complete energy-momentum tensor of the system be symmetric. For

our purposes, in order to ensure the symmetry of the complete energy-momentum tensor of the

system, we should set

al = -2, a2 = 0. (6.38)

Thus, a necessary (but not sufficient) condition for the existence of all conservation laws in any

metric theory of gravitation is that relations (6.37) and (6.38) should hold.

With consideration of these equalities, the component too of (6.32a) of the complete energy-
momentum tensor will have the form

oo oo 1 3U) 7 _0(c-4). (6.39)too+ + tM = + n - -ivS + + oyo u +

This expression can be used to describe the energy distribution of the system in space, while the

component t a° of (6.35) can be used to describe the density of momentum. Integrating expression

(6.39) for the energy-momentum tensor over the body (A)'s volume space and using the trivial
relation

/Ad3jACg_UO_U = --47r /A d3 ' _-_yAp+/AdS_UOt, U, (6.40)

we obtain the following expression for the energy p0 of the system of matter, inertia, and

gravitational field defined in the vicinity of the body (A) as usual:

/A _(0 00 too) (6.41a)
pO

mA = d3y_\t ° + t 9 + .

This corresponds to the following result for the total mass of the fields in this RFA:
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f 1 1-- 7 £

J`4 ua.u =

1 1 7

The obtained resultmay be presentedin terms of the unperturbed mass mA(0) of the body (A)
as follows:

7 /`4dS, 2m`4 = mA(O) -4- _ Jr- m`40(c-3), (6.42)

where the second term represents the contribution of the coupling of the proper gravitational field

of the body under study to the external gravity. This term is zero in the case of an isolated body,

because one may move the boundary of integration to infinite distance. Taking into account that

the integrand behaves as r -3, one makes the conclusion that this integral is zero. One loses

this useful option in the case of the N-body system, and, due to this reason, we must take into

account such 'surface' effects in order to correctly describe the perturbed motion of the bodies

in the system.

The momentum _P_ of the system of fields in the coordinates of this RFA is determined in an

entirely analogous way: by integrating component t e° of (6.35) of the complete energy-momentum

tensor over the compact volume of the body (A),

"_ =/,4 d3y_4(t_°4-t;°4-t_). (6.43a)

Then formomentum P_ we obtainthe followingexpression:

1 p

.x:S

Finally, the requirement of (3.29) may be fulfilled by integrating equation (6.34) over the

volume of the body (A) and choosing the function 6WAo such that the corresponding momentum

P_ in the RFA will vanish for all times. However, as we will see later, this requirement is

not easy to satisfy. The problem one is faced with is that the system of the fields and matter

overlapping the body (A) is not a closed system. This system is a part of a bigger ensemble

of celestial bodies that was initially taken to be a closed N-body system. The definitions for

the energy and momentum of the system may not be given in the local form; instead these

quantities are non-zero in all regions of the system. As a result of such a non-locality, one loses

the possibility of eliminating the integrals from the three-divergences. Thus, in the analysis of the

conservational laws in the gravitational one-body problem, one can integrate such divergences

by using the Stokes theorem and moving the surface of integration at the infinite distance (Fock,

1959; Denisov & Turyshev, 1989; Will, 1993). In the case of coordinates originated with the

quasi-inertial proper RF, such an integration is meaningless. Instead, one may integrate the

corresponding quantities on the surface of the body under consideration. As a result, one may

see from expressions (6.32) that the mass in the proper RF is not a constant anymore. Thus, by

integrating expression (6.32a) over the body (A)'s compact volume, we obtain

dmA 1 40.U(O'Wj O_V_)] mAO(C -s) (6.44)
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The integral on the right-hand side of the expression above vanishes in the case of an isolated

distribution of matter, but for the N-body problem in the quasi-inertial RF it depends on the

magnitude of the fields on the surface of the body under study. Analysis of the conservation

laws is the only way to correctly define the important physical quantities, such as the mass,

momentum, and angular momentum of the field in the local region of the body. One expects

that, in the immediate vicinity of the origin of the coordinate system in the 'good' proper RF, the

form of these laws should resemble that which was developed by Fock (1955) and Chandrasekhar

(1965) for the inertial frames. Therefore, we will use the technique that was developed for the

barycentric approach by modifying it for the case under consideration.

Here we must mention the following circumstance. It follows from eq.(6.35) and eq.(6.43)
that, in 'the post-Newtonian approximation, the density of the total momentum of the system,

in contrast to the barycentric RF0, can be written in the coordinates of the proper RF only in

the non-local form of (6.35) when the components t a° are non-zero, generally speaking, in the
entire space. Unfortunately, this expression cannot be written in the local form that would be

nonzero only in the region occupied by the body (A) because of the presence of external sources

of gravity. Comparing (6.32a) and (6.40), we can draw an analogous conclusion regarding the

energy density of the system. Since the total momentum and total energy of the system in the

post-Newtonian approximation do not depend on the form in which one chooses to write them,

the momentum and energy of the gravitational field, which are non-local by their nature, can

be effectively considered in this approximation by adding local terms to the energy density of

matter. The latter circumstance is especially convenient in computing the motion of complex

systems, since it lets us distinguish in explicit form the total momentum and energy of each of
the bodies of the system.

Therefore, we shall henceforth use the following expression for the density of the total mo-

mentum of matter, inertia, and the gravitational field in the volume occupied by the body:

1

ia° = _va (1 +l-i--_v_,v _ + 3u + P) -

and for the total energy density, we shall use the expression

1 1-- 7

(6.45)

(6.46)

The relationships obtained will be used in order to define the eq.m. of the extended bodies'

forms with respect to the coordinates of the proper RFA. Note that by integrating expressions

(6.45) and (6.46) over the compact volumes of the bodies in the system, one may obtain the

mass and the momentum of these bodies measured with respect to the proper RFA. Such relative

quantities may be very important in the analysis of the relativistic gravitational experiments in

the solar system that we will discuss in the next section. In order to complete the formulation

of the coordinate transformations to the 'good' proper RFA, we should present the function that

was not yet determined, namely the function 5w_0.
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6.3 The Solution for the Function 5W_o.

To obtain the equation of motion of extended bodies in the gravitational field, we must first

bring the covariant conservation equation (6.33) to the form

0

ay° _0(_) = _(_), (6.47)

where _a0 is defined by (6.45), and _'_ represents the entire remaining part of (6.33) and can

be considered the force density acting on matter. This is exactly the force we have mentioned

in Section 3 while discussing expressions (3.27). After performing identity transformations using

eqs.(6.3) and (6.6), we obtain from eq.(6.33):

_(_) = __o_ + _o_w- _a_(n - _v_v_3+ _3p+ _)+
P

1 ,_),
+-P(Y_4Y_A+ -_'Y YA_,YA) 1.. 1 0 a--OU

B=flA Y A

7r -- Oy A yO

)(ov _2
_7_ot,,v,la[,,v_] + _._z _yoAj + _(1 + 2G):__. - _0(y°) + pO(c-6). (6.48)

The eq.m. of each body can be obtained if (6.44) is integrated over the volume occupied by this

body. In order to find the function 5w_4o, we should start with finding the eq.m. of the body (A)

relative to its own RF. Integrating (6.48) over the VA, we obtain

dP_ = F_(yoA), (6.49)
dy °

where P_ is given by expression (6.43b) and

F_(Y°) = fA _y_=_(yO y,_). (6._0)

In order to define the function _WAo(yO), we will require that the momentum of the body (A)

in its proper RF will vanish. This requirement may be fulfilled if the equation for _WAo(yOA) is

chosen in the following form:

_,E)Ao(yOA ) = __(CQaV(I. _ __ 3 l_ 3p +P

1 .. fA -3_ n,_,A [o/_o _ 1^ c_o _ o_;_'l-_aAou a YAP" _gagA +-_ gAxgA ]--

:,, __ _ 5z,9_,U O-b-_ + O[_'V_]OI_,Fz] -
7rma JA _k C3YA + c_3f Off 0 YA

+ 0(c-6). (6.51)
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As a result, one may obtain the differential equation for the total post-Newtonian acceleration

/b_0 from (6.13), which is necessary to apply in order to hold the extended body in the state of

equilibrium in its proper RF. Thus, with the help of expressions (6.15) and (6.51), we obtain the

following equation:

f_t I /1 [_ 3]
+aAo, ja- t-_aAoVAo+2 _ [(O[_V_B1}A+ (V[30_1UB}A])--

B_A

i _ 3 + + +V)L+
B_A

+-_aAo_,]A _ _A_'A_YAYA + _ VA_VA)--

/ ,_-OV# _OV '_ ,_ _ OV'_

(a  2h (6.52)

For practical purposes, one may find the value of the surface integrals in expression (6.52) by

performing the iteration procedure. Thus, it is easy to show that the lowest multipole moments

of the bodies will not contribute to this surface integration. However, the general results will

fully depend on the non-linear interaction of the intrinsic multipole moments with the external

gravity in the local region at the vicinity of the body under consideration. This additional

iterative option will make all the results obtained with the proposed formalism easy to use in

the practical applications.

As one may see, we have reconstructed the post-Newtonian non-linear group of motion for

the WFSMA. Thus, the straight transformation is given by eqs.(6.11)-(6.13). Substitution of the

results obtained for the transformation functions in relations (3.18) will give the inverse transfor-

mation. Finally, the common element of this group may be obtained by making use of relations

(3.19)-(3.20). These results generalize and specify those obtained by Chandrasekhar _ Contop-

ulos (1967) and given by (1.12). In this previous work, the post-Galilean transformations that

preserve the invariancy of the metric tensor were obtained. In contrast to these, our transforma-

tions, eqs.(6.11)-(6.13), in general, transform the coordinates in different non-inertial RFs and

were specifically defined for a system of self-gravitating extended and arbitrarily shaped bodies.

Comparison with the Poincar4 group of motion, (1.7), expanded similarly in inverse powers of c

shows the following:

(i). The spatial part of the transformations up to the terms O(c -2) includes the Lorentzian

terms and allows, in addition, infinitesimal rotations, uniform motion, the shift of the

origin, and the terms due to the gravitational coupling of the internal muttipoles of the

extended bodies with the external gravitation.
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(ii). Thetemporalpart of the transformationincludesthe Lorentziantermsup to O(c -4) plus

additional terms of a purely gravitational nature, as well as the terms due to precession of

the spatial axes. It is the presence of these gravitational terms in both spatial and tem-

poral components of the transformation that gives the transformation its non-Lorentzian
character.

As one can see, the obtained coordinate transformations are in general the non-local ones.

As such, they represent an important and powerful way to study the nature of the multipolar

structure of a system of extended bodies and their gravitational interaction in the WFSMA of

the general theory of relativity. In the next section: we will discuss the generalization of the

obtained results to the case of the scalar-tensor theories of gravity.
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7 Parameterized Proper RF.

In this section, we will further generalize the results obtained for the coordinate transformations

and the metric tensor in the proper RF, which were obtained in the previous section. In order

to generalize the results obtained, we have applied the presented formalism to the scalar-tensor

theories of gravity. It should be noted that considerable interest has recently been shown in the

physical processes occurring in the strong gravitational field regime. However, many- modern

theoretical models that include general relativity as a standard gravity theory are faced with

the problem of the unavoidable appearance of space-time singularities. It is well known that the

classical description, provided by general relativity, breaks down in a domain where the curvature

is large, and, hence, a proper understanding of such regions requires new physics (Horowitz &:

Myers, 1995). The tensor-scalar theories of gravity, in which the usual general relativity ten-

sor field coexists together with one or several long-range scalar fields, are believed to be the

most interesting extension of the theoretical foundation of modern gravitational theory. The

superstring, many-dimensional Kaluza-Klein and inflationary cosmology theories have revived

interest in so-called 'dilaton fields,' i.e., neutral scalar fields whose background values determine

the strength of the coupling constants in the effective four-dimensional theory. However, al-

though the scalar field naturally arises in theory, its existence leads to a violation of the strong

equivalence principle and modification of large-scale gravitational phenomena (Damour et al.,

1990; Damour & Taylor, 1992; Damour & Esposito-Farese, 1992; Damour & Nordtvedt, 1993;

Berkin & Hellings, 1994; Turyshev, 1996). Moreover, the presence of the scalar field affects the

equations of motion of the other matter fields as well (Turyshev, 1996), which makes it inter-

esting to study the opportunities for advanced dynamical tests of these theories in the WFSMA

before they will be applied to the strong-field-regime research. Therefore, the motivation for the

present work was to perform a similar full-scale analysis of the W_FSMA for some tensor-scalar

theories of gravity in order to generalize the results obtained previously.

7.1 Parameterized Coordinate Transformations.

In this subsection, we will present the results of the relativistic study of the Brans-Dicke theory

of gravity (Will, 1993). However, due to the length of the expressions and also in order to avoid

unreasonable complication of the discussion in this section, we will not present here the details

of these calculations. Instead, we have introduced the two Eddington parameters (%/3) in order

to present the obtained relations in a more compact form valid for a number of modern metric

theories of gravity. This gives us a chance to present the final results only. One may repeat the

necessary calculations using the technique of the general post-Newtonian power expansions in

the WFSMA developed in the appendices.

By taking into account the properties of scalar-tensor theories of gravity, and by applying the

rules for constructing the proper RF presented in Section 2, one may obtain the set of differential

equations on the transformation functions ]CA, Q_, and /:A- As a result, the relativistic coordi-

nate transformation between coordinates (x p) of RF0 to those (_A) of the proper quasi-inertial

RFA of an arbitrary body (A) may be given as follows:

x° = + c-2]CA(y°, + c-4 A(y°, + O(c-6), (7.1a)

o_ 0 -2 _ 0
xC' = Y_ + YAo(YA) + C QA(YA,YA) + O(C--4) • (7.1b)

One may obtain the necessary corrections of the third order with respect to spatial separation

for functions (7.2) in a manner analogous to that used for the derivations in Section 5. Then the
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parameterizedcoordinatetransformationfunctions](:A, _,_, and f-.A may be given as follows:

A(YA, YA) = E -- VAov"_VAovUAo) -- Y_A "k (-0(C-4)y O, (7.2a)

B_A

0 _'
_A(YA'YA) =-_[ E ( y_4y_A (01_UB)A--lyAI3Y_A(C_CtUB)A

B¢A

--lv_o V_AoYAB + W_4 (yOA)"b

q-Y_4(UB)A)'+-

+Ya_J_k_ao ao+(T+l) _'_ }A ÷ -
B¢A

( )Z 8AYAYA 77 ?71_v(O_3AUB)--2_B(CO_uUB)o "1" O (lY_t 14) "[-
0

B¢A

1 Z 0--_( ('Y+ 1) "_ __A(yOA'Y_A) = E (-_'YYA_YA UB)A• __ yAYa" [(OAVBB}A

BCA

(O U )A

(7.2b)

"]" ('V_c_A UB ) A] "_

-[-yA:_VAoB /_tl[ la[)_ V _] 1) (u[Bc_A]UB)A])-]-k2 ao ao +('r+ _ [(O[_V_B]}A+
B_A

q-YAB[('Y q- 1) V_Ao E (UB)A -- 2(')' --[- 1) E (Wg)A -- ZbBAo(Y°)] -

B_A B_A

just' 1 (UB} A 1_ vZ ,_2 VAop(V_o(t,) +-- [ E (WB)A-]- "2 ( E -- _'UAo_ AoJ -{- ]

B_A B_A

(-[--6 E 8AYASA"'P'"v'_. ,.y r]l_v(O_UB) 0 - 2("/+ 1)(c3_uVB;3}o-
B_A

_ _ VAo _ _ _ _ U_ _ o

Note that, in order to distinguish between the PPN parameter _ and the Minkowski tensor "Ymn,

we are using new notation for this tensor, namely: 0,,m = 7m,_ = diag(1,-1,-1,-1). The time-

dependent functions Q_{L} and LA{L} in expressions (7.2) are the contributions coming from

the higher multipoles (l _> 3) (both mass and current induced) of the external gravitational field

generated by the bodies (BCA) in the system. These functions enable one to take into account

the geometric features of the proper RFA with respect to three-dimensional spatial rotation.

The form of these functions may be chosen arbitrarily. This freedom enables one to choose any

coordinate dependence for the terms with l >_ 3 in order to describe the motion of the highest

monopoles. Moreover, one may show that, even though the total solution to the metric tensor

gmn(X p) in the barycentric inertial RF0 resembles the form of the one-body solution, eqs.(2.5), if

one expresses this solution through the proper multipole moments of the bodies, it will contain

the contributions coming from the functions a 0Q,A{L}(YA) and LA{L}(yO). As a result, the metric
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tensorin theproperRE A fully represents the tidal nature of the external gravity in the coordinates
of this frame.

The quasi-Newtonian acceleration of the body (A) with respect to the barycentric RF0 may
be described as follows:

_, o /OUB
aAo(_A)= -_" _ \o%--_)A+O(c-6). (7.3_)

BCA

With the accuracy necessary for future analysis, we present the equation for the time-dependent
function a 0WAo(YA) with respect to the time yO as follows:

OWB \ O_A 0 _,
B#A

1 a _ a E ÷
B#A

yO

E ÷
B#A

1.. /Ad YAPA(YAYA +_, YA_AJ ++-_aAo, 3 , ^ ,a ,;, l_au°" °"_ O(c-6). (7.35)

Expressions (7.3) are the two parts of the force necessary to keep the body (A) in its orbit (world

tube) in the N-body system. These expressions are written in the proper time and, if one performs

the coordinate transformation from coordinates (_A) to those of (x p) for all the functions and

potentials entering both equations, (7.3), and takes into account the lowest intrinsic multipole

moments of the bodies only, one will obtain the simplified equations of motion for the extended

bodies, (2.14)-(2.20), written in coordinates (x p) of the barycentric inertial RF0.

Finally, the metric tensor, corresponding to the coordinate transformations (7.1)-(7.3), will

take the form of the Fermi-normal-like proper RFA chosen to study the physical processes in the

vicinity of the body (A):

+V 77u_,aAo_a_o -- (27 -- 1) aAo,aAo_,) • Y_Y_4 + CO(ly%l3)+ c°(_-6), (7.4_)

,2( (_t,_.aAo_ ,_.,.,iAoo)+
B#A

2 _ /02 Va\ ]_

B#A
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B#A

2 0(c-4), (7.4c)VAVA+ O(]Y_I3)+

where the total Newtonian potential U in the vicinity of the body (A) is given by expression

(6.17). Both functions WA and WB are parameterized by the two Eddington parameters 7 and

/3 as follows:

WA(_) = /3U_(_A)+ _A(_) + 2a_0• O_AXA(ypA ) + 1 02 -

fA 0 ,v 0 tv )
d3y_A pA(YA, YA)UB(YA, YA) +

+ _ 2/3 UA(YPA)UB(yPA) -- (37 + 1 -- 2/3) [Y_.-- Y_I
B#A

Ad3 , _ 0 tun 0 _ v Z 'D ,v 'B_
-- YA YA YA |__ [YAYAYA __

X YAPA_YA, YA ) Oy_ [ _-_ -- y_] J + O(]y_ 14) + O(c-4)y_, (7.5a)

1 02

C#A YA oY_A

fB ---_1 pB(v°' YAJ

f d 3 , f 0 ,v v 0 0 _ v B 'v ,v '____ [ YAYAYA -- YAYAYA | O(C-4)y_. (7.55)

The functions WA and WB fully represent the non-linearity of the total post-Newtonian gravita-

tional field in the Fermi-normal-like coordinates of the proper RF. As a result, we have obtained

the metric tensor in the Fermi-normal-like coordinates and the coordinate transformations lead-

ing to this form. These transformations are defined up to the third order with respect to the

spatial coordinates. Let us note that, as a partial result of the analysis presented in the pre-

vious section, we have shown that the Fermi-normal-like coordinates do not provide one with

the conservation laws of the joint density of the energy-momentum of matter, inertia, and the

gravitational field in the immediate vicinity of the body under consideration. However, taking

into account the expected accuracy of the radio-tracking data from the future Mercury Orbiter

mission, we can neglect the influence of the corresponding effects and, therefore, use the Fermi-

normal-like coordinates for our theoretical studies. As a result, we will analyze the motion of

the spacecraft in orbit around Mercury from the position of parameterized relativistic gravity.

102



7.2 Equations of the Spacecraft Motion.

We will now obtain the equationsof the spacecraftmotion in a Hermean-centricRF.To do
this, we considera Riemannspace-timewhosemetric coincideswith the metric of N moving

extended bodies. We shall study the motion of a point body in the neighborhood of the body

(A). The expression for the acceleration of the point body a_0) can be obtained in two ways--
pn rn. keither by using the equations of geodesics of Riemann space-time dun/ds +_mk u "a -_- 0 or

by computing the acceleration of the center of mass of the extended body and then letting all

quantities characterizing its internal structure and proper gravitational field tend to zero. In

either case, one obtains the same result (Denisov & Turyshev, 1990).

In order to obtain the Hermean-centric equations of the satellite motion, we will write out

the equations of geodesics to the required degree of accuracy. For n = a, we have

du a

d---'_-+ F_°u°u° + 2F_eu°u_ + r_2u"ue = O(c-6)" (7.6)

W'e consider the metric tensor of Riemann space-time to be given by expressions (7.4) in this

case. It is then possible to find the connection components of Riemann space-time needed for
subsequent computations:

0wA 0y11 0Av
+ 2(7 + 1)-a--a-+

70---_-AJOy_ c,y :4

+((27-1)a_oaAo.--75_'a)4oaao)_--_ a)' _ [(O_,WB_ + 27UA(O_,UB}o]+
B¢A t. /0

BC:A

oOUA . OV23
F_e(Y_A) = 75e 0---_A"A + (7 + 1)5[e 0--_A + 7r_z,6_oYA]+

+(7 + 1) _ [(O_,V;]}o--(v[_Oe]UB}A] .y_ + O(ly._[ 2) +O(c-S),
B#A

, _OUA 5_OUA _,OUA',+rl;_,_rI -- ,
OYA

1

B:/:A

, (7.7a)

(7.7b)

(7.7c)

To reduce the equation of geodesic motion, (7.6), we shall use both the expressions above and

the definition for the four-vector of velocity in the form
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un dy._.._/
= dy o (goo + 2go_,vu + 9u_ vuv_) --1/2

Then by taking into account that d/ds = u°d/dy°A (with the components of the three-dimensional

velocity vector of the point body denoted as v_0) = dy_4/dy°A) and by using the Newtonian

equation of motion of a point body as

dv_) _ au O'U

% = _ - -,_ _ + o(c-4),

we may make the following simplification:

dlnu ° 0U _ u OU O(c_5) )v_0/%V=v_o_(_ +_v(0)_+

Substituting this relation into the equations of motion, (7.6), we find the acceleration a_0) of the

point body:

au OU .

B#A

OUA ov2

BT_A

2

B¢A

-V(o)V(o) [2('7 + 1)OaUA + -_("/+ 3) _
B--/:A

+Y_4 ('y62aAoxa)4o -- (27 -- 1)a_4oaAo . + 2_/v(0)[r_aua_ o -- 5_dAo_]+

0 _ ,_IOUB\+z
B¢A

By expanding all the potentials in (7.8) in power series of 1/YBAo and retaining terms with

.._ ya/lYSAol only to the required accuracy, we then obtain

au OU c_
a_o) = -rl Oy___AA + 6Aa_O) + 5ABa_o) + 5Ba_O) + 6sca(o ) + O(ly._l 2) + O(c-6), (7.9)

where the post-Newtonian acceleration 6Aa_O) due to the gravitational field of the body (A) only

may be given as
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i _ 3
6Aa_O) = 2(3' + _)UACgC_UA-- (7 + 3 )0 ¢1A + (2_ -- 3)0 ¢2A+

4-(1 -- 3")_(I)4A 4- 30 AA -- (23' + 1)V_o)O;,V_ +3"V(o) V_o)SC_UA-

--2(3' + 1)V_o)V_o)Cgt,UA - 2(3' + 1)V(o);,[cg"V_ -cgaV_] -

Ad3O/ _ v,C%/ (y_ -- y_) 1 /n /'ACg_UA--2(3'+1) _At'A A At, [-_A y,_[ 2(43'+ 3) d3Y'AIy-_A--y---_[ _-

1/A Y°- Y_)(Y_-y_) °(c-_)+3 d3_,;,,_ayA( A I_: y_T + (7.10)

The termThis term is known and reasonably well understood (Denisov & Turyshev, 1990).

_ABa_o ) is the acceleration due to the interaction of the gravitational field of the extended body
(A) with the external gravitation in the N-body system:

= _ ((43 - 33" - 1) mAmB n c_ BAo (6_ + n_n;,)+
B#A \ YBAo y2 + 2(/3 -- 1) rnArnB NiL6ABa c_o)

Y y2BAo

g3')r/5"a_ A 1)nC, nCnA ) rn__..LB c,_ A-+rnArnBT'cAk(2Z+y3BAo( n + (/3 -- -- (3"+ l)y3sAoP¢AS A V(0)+

,_m_y_o((2_+ _ - I)_2 + 2(33+ 3'- 1)iV_oN_o,)y_+

+33mAmBy4A---_lYAIn_, ¢n;_(26_NBAo:, 4- N_Ao(W¢_, + 5NBA0¢NBA0_)))_ + O([y_[ 2) + O(C-6), (7.11)

where S_ ¢ is the reduced spin moment of the body (A) and 79¢_ = _1_),4- 3NBAoetYBAoA is the po-

larizing operator. Note that the combination of the post-Newtonian parameters in the first term

of expression (7.11) differs from that for the well-known Nordtvedt effect (Nordtvedt, 1968b,c;

Will, 1993). This may provide an independent test for the parameters involved. The reason that

our third term in this expression differs from the analogous term derived in Ashby &: Bertotti

(1986) is that, in order to obtain this result, (7.9)-(7.11), we used the consistent definitions for

the conserved mass density in the proper RFA. Moreover, in constructing the Fermi normal coor-

dinates previous authors used incomplete expressions for the spatial coordinate transformations,

which differ from eq.(7.2) (specifically in the third order of the spatial coordinates). Note that

if we decide to use our definitions, the result cited above will take the form of (7.11). The next

term, _BaC_o), is the post-Newtonian acceleration caused by the other bodies in the system on the
orbit of the body (A) (the effect of the post-Newtonian tidal forces):

o 1 - 17))4-6Bat0) = _ y_ (1(14_- 4_- 7)6; + 3NBAoNBAo,-_(427 - 16Z
3 ?7%2

B#A 2 Y_Ao '

1 _ 3

+ y3AomS--,'Pa[(.y + __)VBAo;_VBA° + 3(VBAo:,N_Ao)2 + (4_ -- 3" -- 3)EB] +

rnB a e A ]_
4-3"_.--A---TPeX[fuVBAoVBAo --L?2BAoYBAo°#ae cA _ UBAoVBAog?Te aA J

YBAo
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a e A
ms (5_rL_u- 3N_AoNBAouNBAoeNBAo_)VBAoVBAo+

y3Ao

m B 2 13 ,',e ,k 2
+._:y___p,_ [].YV(0)13V(0),/ 5U _(_/+ a _-- 3)V(o)V(o)Su+

YBAo

2 13 _ r_a6_ 13 A a
"/V(0) V(0) W. 13 -- _713.r]c_e] "_- 2"/V(0) VBAo [6. 63 -- rt[_#_ ae]'-_

13 ), ae VBAo513]]) + O(ly_l 2) + O(c-6). (7.12)+2(.7 + 1)V(o)Su[VBAo13_? -- '_

Finally, the last term in expression (7.9), 6uca'_o), is the contribution to the equation of motion of
the non-linear gravitational interaction of the external bodies with each other, given as follows:

(mBmc [3(7 a ),= - 2 2 - I)P_ NBAo.xN_Ao+E E y \yB oy  o
BCA CCA,B

1 :,
a _ mBmc [(2/3 - 37 + [)P; ++(2/3- 1)lV_AoNcAo.- N_0::BA0.] + Y_0Yc_0

a e A
1 : a_ :_ xe r_ra _,r,x -(6_ + N$AoNCAou)N_AoN_Ao)]++-_77:'0, [rl NCAouN_Ao + ..,..CAo_*CAo

mBmc (1 a a)4 2 2 5"P_ + 75. NBAo_N_Bo -
YBAo YCBo

1 3 a mBmc )--(_/ + )(N_AoNCBo, + NBAouN_Bo)] + (2/3- X)P; 3 +
z YBAoYCB o

+O([y_[ 2) + 0(c-6). (7.13)

Thus, the equations presented in this subsection are represent the motion of a test body in

the Fermi-normal-like coordinates chosen in the proper RF of a body (A). Together with the

coordinate transformations, (7.1)-(7.3), this is the general solution of the gravitational N body

problem.

We present here the restricted version of the equations, which is consistent with the expected

accuracy for ESA's Mercury Orbiter mission. This limited accuracy permits us to completely

neglect contributions proportional to the spatial coordinates y_. The planeto-centric equations

of satellite motion around Mercury can be represented by a series of 1/]YBAol as follows:

_.:auA [sub _ :ouB\ 1 5:_o)+ar0)=- E +
BCA

((4/3- 3"7- l) mAmB n `_+
B#A \ YBAo y2

Y_3A°(5; "_ nan.)+
+ 2(/3- 1)mymS y2BAo

mAmB,,., [(2/3 + -_'y)rl n + (/3 - )nanen :_ + O(ly_,l)+ O(c-6),4 _ re_
YBAo

(7.14)
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whereindex(A) denotesthe planetMercury,andthepost-Newtonianacceleration 5Aa_O) is due
to the gravitational field of Mercury only.

Thus, the formalism presented in this section could significantly simplify the general analysis
of the tracking data for the Mercury Orbiter mission. We have presented the Hermean-centric

equations of satellite motion, the barycentric equations of the planet's motion in the solar system

barycentric RF, and the coordinate transformations that link these equations together. In par-

ticular, our analysis has shown that in a proper Hermean-centric RF the corresponding equations

of the satellite motion depend on Mercury's gravitational field only. This set of equations is well

known and widely in use for studying the dynamics of test bodies in the isolated gravitational one-

body problem. The existence of the external gravitational field manifests itself in the form of the

tidal forces only and also determines the dynamic properties of the constructed Hermean-centric

proper RF. Note that within the accuracy expected for the future Mercury Orbiter mission, one

may completely neglect the post-Newtonian tidal terms. However, while constructing this RF,

we went further than the expected accuracy of the future experiments. Indeed, the last term

in equation (7.14) is due to the coordinate transformation to the Fermi-normal-like RF, which

may be chosen in the planet's vicinity. One may neglect this term for the solar system motion;

however, if one applies the presented formalism to the problems of motion with a more intensive

gravitational environment, one will find that this term may play a significant role. The appli-

cation of the results obtained here to the problems of motion of the double pulsars is currently
under study and will be reported elsewhere.

It should be noted at once that the coefficients in front of the two terms in the second line

of the expression in eq.(7.14) prove the correctness of the decomposition of the local fields in the

proper RFA, which we performed at the end of section 4. Indeed, if even one of these terms had

had a non-zero value, this would have meant that the metric tensor of the local problem would

not depend on the external gravity through the relativistic tidal-like potential, which is of the

second order with respect to the spatial coordinate _ y{A2}, but instead this dependence would

be at least of the order _ y{A1}. As a result, this new dependence may lead to a violation of

the Strong Equivalence Principle (SEP). There are certainly no worries for the general theory

of relativity for which the PPN parameters have the values V = _ = 1. However, the theories

having a different means of _ and _ may predict new effects in motion of the satellites due to

the corresponding SEP violation. At this point, we have all the necessary equations in order to

discuss this and other gravitational experiments with the future Mercury Orbiter mission.

7.3 Gravitational Experiment for Post-2000 Missions.

Mercury is the closest to the Sun of all the planets of the terrestrial group, and because of its

unique location and orbital parameters, it is well suited to relativistic gravitational experiments.

The short period of its solar orbit allows experiments over several orbital revolutions, and its

high eccentricity and inclination allow various effects to be well separated. In this section, we will

discuss possible gravitational experiments for the Mercury Orbiter mission. Analysis performed
in this section is directed toward the future mission, so we will show which relativistic effects

may be measured and how accurately.

It is generally considered that the processing of data from orbiters is more complicated than

that from landers. This is because of the need to convert from the measured Earth-spacecraft

distance to the desired Earth-planet distance. This involves determining the orbit of the space-
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craft about the planetarycenterof mass,which requires solving from the tracking data for a

number of spatial harmonics of the gravitational field and for radiation pressure and other such

effects. The other non-gravitational perturbations, such as firing attitude control jets, which

have unbalanced forces, are also frequently present, which further complicates the analysis. The

orbit determination of the Mariner 9, for example, was substantially affected not only by these

factors, but also by the fact that the spacecraft was placed on the 12 hr period orbit with low

periapsis. Thus, in order to precisely describe the motion of the Mercury Orbiter relative to

Earth, one should solve two problems, namely: (i) the problem of the satellite motion about

Mercury's center of inertia in the Hermean-centric frame, and (ii) the relative motion of both

planets--Earth and Mercury--in the solar system barycentric RF0. Our analysis is intended to

provide a complete solution of these two problems.

In order to study the relativistic effects in the motion of the Mercury Orbiter satellite, we

separate these effects into the three following groups:

(i). The effects due to Mercury's motion with respect to the solar system barycentric RF0.

(ii). Effects on the satellite's motion with respect to the Hermean-centric RF.

(iii). Effects due to the dragging of the inertial frames.

The effects of the first group are standard and, with the accuracy anticipated for the future

Mercury Orbiter mission, most of them may be obtained directly from the Lagrangian function

(2.9) or from the equations of motion, (2.14)-(2.20). The effects of the second group can be
discussed based on equations (7.14). And finally, the effects of the last group can be discussed
based on the coordinate transformation rules given by the eqs.(7.2). In the last case, however,

we employ a simplified version of these transformations, due to the limited expected accuracy

(-_ 1 m) of the Mercury ranging data. Thus, in the future discussion, we will use the following

expression for the temporal components:

NBAo)_ NBAo tz= (1+ 4") J-°

--_VAo_VAojdt - VAo,Y_) +
(.O(c-4), (7.15)

where I_ v represents the STF intrinsic quadrupole moments of the bodies. Note that the terms
contained in the function/:A "_ O(c-4) will contribute to the post-Newtonian redshift. However,

it will not be possible to perform the redshift experiment with the accuracy anticipated for

the mission, and therefore this term was omitted. The corresponding expression for the spatial

components of the coordinate transformation is given by

xa(yO, y_) = YAo(YA)a0 + y_ + C-2(yAt_[ f y°a f_aA_(g)dt'_lv_oV_o_7Oa_' _ Y_Ao]_mB
BCA

\
mB _ N" w_(y°)} + C0(lYAI 3) + O(c-4),_,-_'---[YaYatz Bao - lyA_Y_N_Ao] +

B#A ,YBAo /
(7.16a)
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with the precession angular velocity tensor _Z given as follows:

1_ mB _T[a fl] l_ mB AT[C, oZ]= E + +
* J Y2BA ° "" BAo '_bo +BCA 2 j Y2BA ° "" BAo _Ao

2y3Ao ' ;_ _OA +

where S_ " is the STF intrinsic spin moment of the bodies.

(7.16b)

We mention that, by means of a topographic Legendre expansion complete through the sec-

ond degree and order, the systematic error in Mercury radar ranging has been reduced sig-

nificantly (Anderson et aI., 1995). However, a Mercury Orbiter is required before significant

improvements in relativity tests become possible. Currently, the precession rate of Mercury's

perihelion, in excess of the 530 arcsec per century (_/cy) from planetary perturbations, is

43.13 "/cy with a realistic standard error of 0.14 "/cy (Anderson et al., 1991). After taking

into account a small excess precession from solar oblateness, Anderson et al. find that this result

is consistent with general relativity. Pitjeva (1993) has obtained a similar result but with a

smaller estimated error of 0.052 _/cy. Similarly, attempts to detect a time variation in the gravi-

tational constant C using Mercury's orbital motion have been unsuccessful, again consistent with

general relativity. The current result (Pitjeva, 1993) is C/G = (4.7 ± 4.7) x 10-12 yr -1.

7.3.1 Mercury's Perihelion Advance.

Based on Mercury's barycentric equations of motion, one may study the phenomenon of Mer-

cury's perihelion advance. The secular trend in Mercury's perihelion 14 depends on the linear

combination of the PPN parameters ^f and/3 and the solar quadrupole coefficient J2o (Nobili &

Will, 1986; Heimberger et al., 1990; Will, 1993):

#3nM_e2M) 3(__M)2 (1J2®nM-----fi--MM)2 (3COS2 iM- 1), "/cy (7.17a)m (2 + 2")' -- /3)aM--(i +

where aM, riM, iM, and eM are the mean distance, mean motion, inclination, and eccentricity of

Mercury's orbit. The parameters Po and Rc are the solar gravitational constant and radius,

respectively. For Mercury's orbital parameters, one obtains

= 42':98 [3(2 + 27-_)+0.296" J2, x 104], "/cy (7.17b)

Thus, the accuracy of the relativity tests on the Mercury Orbiter mission will depend on our

knowledge of the solar gravity field. The major source of uncertainty in these measurements is

the solar quadrupole moment J2o. As evidenced by the oblateness of the photosphere (Brown et

al., 1989) and perturbations in frequencies of solar oscillations, the internal structure of the Sun

is slightly aspherical. The amount of this asphericity is uncertain. It has been suggested that

it could be significantly larger than calculated for a simply rotating star and that the internal

rotation rate varies with the solar cycle (Goode & Dziembowski, 1991). Solar oscillation data

suggest that most of the Sun rotates slightly slower than the surface with the possible exception

of a more rapidly rotating core (Duvall & Harvey, 1984). An independent measurement of J2o

14It should be noted that the Mercury Orbiter itself, being placed in orbit around Mercury, will experience the

phenomenon of periapse advance as well. However, we expect that uncertainties in Mercury's gravity field will

mask the relativistic precession, at least at the level of interest for ruling out alternative gravitational theories.
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performedwith the Mercury Orbiter would provide a valuable direct confirmation of the indirect

helioseismology value (2 4- 0.2) × 10 -7. Furthermore, there are suggestions of a rapidly rotating

core, but helioseismology determinations are limited by uncertainties at depths below 0.4 solar

radius (Libbrecht & Woodard, 1991).

The Mercury Orbiter will help us understand this asphericity and independently will enable

us to gain some important data on the properties of the solar interior and the features of its
rotational motion. Preliminary analysis of a Mercury Orbiter mission suggests that J2® would be

measurable to at best _ 10-9 (Ashby et al., 1995) or about 1% of the expected J2e value. This

should be compared with the present 10% solar oscillation determination (Brown et al., 1989).

7.3.2 The Redshift Experiment.

Another important experiment that could be performed on a Mercury Orbiter mission is a test

of the solar gravitational redshift. This would require that a stable frequency standard be flown

on the spacecraft. The experiment would provide a fundamental test of the theory of general

relativity and the Equivalence Principle upon which it and other metric theories of gravity are

based (Will, 1993). Because in general relativity the gravitational redshift of an oscillator or

clock depends upon its proximity to a massive body (or more precisely the size of the Newtonian

potential at its location), a frequency standard at the location of Mercury would experience

a large, measurable redshift due to the Sun. With the result for the function ]C A given by

eqs. (7.2a) and (7.15) in hand, one can obtain the corresponding Newtonian proper frequency
variation between the barycentric standard of time and that of the satellite (the terms with

magnitude up to 10-12), given as

dx ° #® ]-$M 1 , _® _ _
= 1+ + + (v. + 2- My<0>j+ O(c-'), (7.18 )

where (Y_0), Y(0)) are the four coordinates of the spacecraft in the Hermean-centric RF and _7(0)
is the spacecraft orbital velocity. One can see that the eccentricity of Mercury's orbit would be

highly effective in varying the solar potential at the clock, thereby producing a distinguishing

signature in the redshift. The anticipated frequency variation between perihelion and aphelion

is to the first order in eccentricity:

(_o ) eM = _21z®eMaM (7.18b)

This contribution is quite considerable and is calculated to be (8f/fO)eM = 1.1 X 10 -s. Its

magnitude, for instance, at a radio wavelength A0 = 3 cm (f0 = 10 GHz) is (_f)eM -_ 110 Hz.
We would also benefit from the short orbital period of Mercury, which would permit the redshift

signature of the Sun to be measured several times over the duration of the mission. If the

spacecraft tracking and modelling are of sufficient precision to determine the spacecraft position
relative to the Sun to 100 m (a conservative estimate), then a frequency standard with 10 -15

fractional frequency stability _f/f -- 10 -15 would be able to measure the redshift to 1 part in

10 7 or better. This stability is within the capability of the proposed spaceborne trapped-ion

(Prestage et al., 1992) or H-maser clocks (Vessot et al., 1980; Walsworth et al., 1994).

7.3.3 The SEP Violation Effect.

Besides the Nordtvedt effect (for more details see Anderson, Turyshev et al. (1996)), there exists

an interesting possibility for testing the SEP violation effect by studying spacecraft motion in
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orbit around Mercury. The corresponding equation of motion is given by eq.(7.14). As one

can see, the two terms in the second line of this equation vanish for general relativity, but for

scalar-tensor theories, they become responsible for small deviations of the spacecraft motion from

the support geodesic. Both of these effects, if they exist, are due to non-linear coupling of the

gravitational field of Mercury to external gravity. They come from the expression for WA given
by eq.(7.5a), which is the local post-Newtonian contribution to the g00 component of the metric
tensor in the proper RF.

The first of these terms may be interpreted as a dependence of the locally measured gravita-

tional constant on the external gravitational environment and may be expressed in the vicinity
of body (A) as follows:

GA=G0[1-(4_- 3_- 1/E mB]. (7.19/
B_A YBAo

In the case of a satellite around Mercury, the main contribution to this effect comes from the

Sun. 15 Because of the high eccentricity of Mercury's orbit, the periodic changing of the Sun's local

gravitational potential may produce an observable effect, which can be modeled by a periodic

time variation in the effective local gravitational constant:

+ cosaM(1 - e2M)

which gives the following estimate for this effect on Mercury's orbit:

[_-]period_ ¢4Z--3_--1)×152×10-Tsin¢It/ yr-1 (721/

Note that this effect in eq.(7.21) is fundamentally different from that introduced by Dirac's

hypothesis of possible time dependence of the gravitational constant (Pitjeva, 1993). As one

can see from expression (7.21), the characteristic time in this case is Mercury's siderial period.

This short period may be considered as an advantage from the experimental point of view. In

addition, the results of the redshift experiment could help in confident studies of this effect.

Recently a different combination of the post-Newtonian parameters entering in the Nordtvedt

effect, _7-- 4_-7-3, was measured at 77_< 10 -4 (Dickey et al., 1994). This means that, in order to

obtain comparable accuracy for the combination of parameters in eq.(7.21), one should perform

the Mercury gravimetric measurements on a level no less precise than [G/G]perio d _ 10-11 yr -1.
Recently a group at the University of Colorado analyzed a number of gravitational experiments

possible with future Mercury missions (Ashby et al., 1995). Using a modified worst-case error

analysis, this group suggests that after one year of ranging between Earth and Mercury (and

assuming a 6 cm rms error), the fractional accuracy of determination of the Sun's gravitational

constant, rnQG, is expected to be of the order _ 2.1 x 10 -11. Moreover, even higher accuracy

could be achieved with a Mercury lander as proposed by Ashby et aI. (1995). This suggests

that the experiment for determination of the effect in eq.(7.21) may be feasible with the Mercury
Orbiter mission.

15Note that this combination of PPN parameters differs from the one presented for a similar effect in (Will, 1993).

The reason for this is that, in this case, the transformations in the form of eqs.(7.2) let us define transformation

rules of the metric tensor between the barycentric and proper planeto-centric RFs and, hence, obtain the correct

and complete equations of geodesic motion in the quasi-inertial Hermean-centric RFM.
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Another interesting effect on the satellite's orbit may be derived from eq.(7.14) in the form

of the following acceleration term:

1_rnMm® r_

Y M
(7.22)

where RM is Mercury's heliocentric radius vector and NM is the unit vector along this direction.

This effect is very small for the orbit proposed for the ESA's Mercury Orbiter mission. However,

one can show that there exist two resonant orbits for a satellite around Mercury, either with

the orbital frequency w(0 ) equal to Mercury's siderial frequency WM, _(o) _ WM, or at one-third

of this frequency, w(0) _ WM/3. For these resonant orbits, the corresponding experiment could

provide an independent direct test of the parameter/3.

7.3.4 The Precession Phenomena.

In addition to the perihelion advance, while constructing the Hermean proper RFM, one should

take into account several precession phenomena included in transformation function Q_ and

associated with the angular momentum of the bodies. As one may see directly from eqs. (7.2b) and

(7.16a), besides the obvious special relativistic contributions, the post-Newtonian transformation

of the spatial coordinates contains terms due to the non-perturbative influence of the gravitational

field. This non-Lorentzian behavior of the post-Newtonian transformations was discussed first

by Chandrasekhar & Contopulos (1967) for the case of post-Galilean transformations. Our

derivations differ from the latter by taking into account the acceleration of the proper RF and

by including the infinitesimal precession of the coordinate axes with the angular velocity tensor

£/_ given as follows:

__ I_ #B 7vla _Z]_
_ = _#ME [(_ + 1, p_ NIo v_l _ (_+.Y_Mo "'''°_'°"2) y2Mo BMo Mo

+(V 4- ./2Y3BMo-- _ k_'M 4-
(7.23)

where, as before, the subscript (M) stands for Mercury and summation is performed over the

bodies of the solar system. This expression rederives and generalizes the result for the precession

of the spin of a gyroscope s_ attached to a test body orbiting a gravitating primary. Previously

this result was obtained from the theory of the Fermi-Walker transport (Will, 1993). Indeed,

in accord with eq.(7.16a), this spin (or coordinate axes of a proper Hermean RFM) will precess

with respect to a distant standard of rest, such as quasars or distant galaxies. The motion of the

spin vector of a gyroscope can be described by the relation

d____s_= [_M X s_]. (7.24)
dt

By keeping the leading contributions only and neglecting the influence of Mercury's intrinsic spin

moment, we obtain from expression (7.23) the angular velocity _M in the following form:

I _ p,® r_, P'® tTd+
n#

(7.25)
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where ?_Mo and _7® are Mercury's and the Sun's barycentric orbital velocities and S® is the solar
intrinsic spin moment.

The first term in eq.(7.25) is known as geodetic precession (De-Sitter, 1916). This term arises

in any non-homogeneous gravitational field because of the parallel transport of a direction defined

by s_ in (7.24). It can be viewed as spin precession caused by a coupling between the particle

velocity _'Mo and the static part of the space-time geometry. For Mercury orbiting the Sun, this
precession has the form

_C = (3' + _J_MM [_M X 77M0). (7.26)

This effect could be studied for the Mercury Orbiter, which, being placed in orbit around Mercury,

is in effect a gyroscope orbiting the Sun. Thus, if we introduce the angular momentum per unit

mass, /_ = -_M X VMo , of Mercury in solar orbit, equation (7.26) shows that _G is directed along
the pole of the ecliptic, in the direction of/_. The vector tic has a constant part

= 1(1 + 2,),)]_(D/CJM = 1 + 2"7.0.205 "/yr, (7.27a)
aM 3

with a significant correction due to the eccentricity eM of Mercury's orbit:

cos WMt = 3 (1 + 27)I_OWM eM COSWMtO =

1 + 27
aM 7 " 0.126 COSWMt0 "/yr, (7.27b)

where WM is Mercury's siderial frequency, to is reckoned from a perihelion passage, and aM is

the semimajor axis of Mercury's orbit.

Geodetic precession has been studied for the motion of lunar perigee, and its existence was

first confirmed with an accuracy of 10% (Bertotti et al., 1987). Two other groups have analyzed

the lunar laser-ranging data more completely to estimate the deviation of the lunar orbit from the

predictions of general relativity (Shapiro et al., 1988; Dickey et al., 1989). Geodetic precession

has been confirmed within a standard deviation of 2%. The precession of the orbital plane

proposed for the ESA's Mercury Orbiter (periherm at 400 km altitude, apherm at 16,800 km,

period of 13.45 hr, and latitude of periherm at +30 deg) would include a contribution on the

order of 0.205 _/yr from the geodetic precession. We recommend this precession be included in
future studies of the Mercury Orbiter mission.

The third term in expression (43) is known as Lense-Thirring precession, _LT. This term gives

the relativistic precession of the gyroscope's spin, _0, caused by the intrinsic angular momentum
:_ of the central body. This effect is responsible for a small perturbation in the orbits of artificial

satellites around the Earth (Tapley et al., 1972; Ries e$ aI., 1991). However, our preliminary

studies indicate that this effect is so small for the satellite's orbit around Mercury that will be
masked by uncertainties in the orbit's inclination.
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8 Discussion: Relativistic Astronomical RFs.

In this section, we will discuss some questions of the practical application of the results presented

in this report. Let us mention that presently radio sources seem to be able to provide one

with the more stable and precise reference measurements needed for reliable navigation in outer

space. This makes it reasonable to construct the future astronomical RFs based upon the radio

source catalogues that are expected to be an essential part of future relativistic navigation in

the solar system and beyond (Standish, 1995). Moreover, as we know, the accuracy of VLBI

timing measurements has improved rapidly over the last few years and is presently a few tens

of picoseconds (ps). It is important in precise measurements such as these that inadequate
modelling not contribute to the inaccuracy of the results. We believe that the results obtained

in this report are ready to be used directly in application to this and many other problems of
relativistic observations in the solar system.

The KLQ parameterized theory of astronomical RFs discussed in this report enables one to

perform the necessary calculations in the most arbitrary form valid for many theories of gravity.

The different physical aspects of choosing a well-defined local RF in a curved space-time has been

discussed in many publications. In summary, in modern astronomical practice there are two

physically different types of relativistic RFs that are extensively in use, namely:

1. The set of inertial RFs, which includes

(i). The asymptotic inertial RF.

(ii). The barycentric inertial RF.

2. The

(i).

(ii).

Off).

set of the observer's quasi-inertial proper RFs, which consists of

The bodycentric RF, constructed for a particular extended body in the system.

The satellite RF, defined on the geodetic world line of a test particle orbiting the body
under consideration.

The topocentric RF, which is defined on the surface of the body under study.

The main difference between these two classes of RFs is that, unlike the frames of the first

type, which are inertial, the observer's frame is, in general, non-inertial. Such a hierarchy of

frames in the WFSMA, if needed, may be extended to a larger scale of motion. The barycentric

RF0 could also be used (with some cosmological assumptions) as an analog of the rest frame

of the universe for the description of the galactic and extra-galactic motion. One may find a

more detailed discussion of this hierarchy of the RFs in applications to problems of modern

astronomical practice in (Brumberg, 1991; Voinov, 1994; Folkner et al., 1994). Theoretically, the

RF and the set of coordinates selected may be arbitrary. The relativistic terms in the equations

of motion, the light time equations, and the transformation from coordinate time to physically

measurable time will vary with the RF and coordinates selected. In general, the numerical values

of various constants, obtained by fitting the theory to observations, will also vary. However,
the numerical values of the computed observable are independent of the RF and the CS selected

(Moyer, 1971).

While the properties of inertial RFs from the first set of the frames listed above are well

understood and widely accepted in many areas of modern astronomical practice, below we shall
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concentrateour attentionon the propertiesof the relativistic RFsfrom the secondset, namely,
wewill be interestedin constructionof the geocentric,the satellite,andthe topocentricframes.
The logic of constructionof theseframesis quite simple: Due to the fact that the geocentric
framewaspreviouslywell justifiedphysicallyand explicitly constructedfrom themathematical
standpoint,the constructionof thetworemainingframeswill bemadebasedontheseestablished
propertiesof the geocentricRF. Indeed,theproperRF A of an extended body (A) contains all the
information about the proper gravitational field of the body (A) as well as the explicit information

about the external gravity. Then, considering that the properties of the geocentric RF are already

known, we will give the definitions of the satellite and the topocentric RFs. Moreover, we will

present the results generalized on the case of the scalar-tensor theories of gravity and will include

in the analysis the two Eddington parameters (7, _).

8.1 The Geocentric Proper RF.

The properties of construction of the geocentric RF were discussed in Section 6 of the present

report, and below we will present the final results only. Thus, the form of the coordinate transfor-
mations between the coordinates (x p) of the barycentric inertial RF0 and those (_A) of a proper

quasi-inertial RF A of an arbitrary body (A) for the problem of motion of the N-extended-body

system in the WFSMA was obtained as follows:

x o --_yO ÷ c-2KA(yOA, Y_A)+ c-4LA(yOyeA) + O(C-6), (8.1a)

x_ = y_+ y_o(yo) + c-2Q_(y_, v_) + O(c-4). (8.1b)

We will present the results corresponding to the coordinate transformations to the RF, which

has all ten parameters CA, a_ and f_ of the constructed group of motion vanish and which is

given by eq.(5.44) as

(A= _-2_f + _-4(_ = o_ =/_ = 0.

Moreover, we shall be interested in such RFs that preserve all ten existing conservation laws of

the local gravity, inertia, and matter, so that we require that the conditions of eqs.(6.37) hold,

namely:
c_ 0

QA{L}(YA) ----LA{L}(yOA) = O, Vl > 3.

With these conditions, the transformation functions KA, Q_4, and LA take the following form:

1 , v(c_%o
B_A

(8.2a)

B_A

+_o(y °) + O(c-4)y_, (S.2b)
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- 2,7 _.y_) )+

yO

+YA_,VAoaf'_t'la[_VZAI(z_ °+ ('7+ 1) E[(O[)_V_])A+(V[ZO;qUB)A])+
B#A

+,,A_[(-_+,)_oE;(_.)_- _(_+,) E;(_)_- W_o(_°)]-
B_A B#A

f_t' 1 1 _,_2 .-j [E (_-)A+_(E (_,)A-_"._o_VAo_+VAo,._o(")]+O(_-o)_,o
B#A B#A

The equations for the functions a_0
respectively.

(8.2c)

and _)A0 were given previously by equations (7.3) and (6.52),

The transformations, eqs.(8.2), produce the metric tensor gA n of the geocentric RF with the

following components:

gA(_A) = 1 -- 2/.1+ 2"14,'+ ©(c-6), (8.3a)

gA(_A) = 4 r/a_F _ + O(c-5), (8.3b)

A p (1 + 27N) + O(c-4), (8.3c)ga_(YA) = 77a_

where for the brevity of the future discussion we introduced the following notations for the

generalized gravitational potentials in this local frame:

-- r _ / aUB \ (UB)A] (8.4a)z_(_)--u(yP)=Zu.(y_(_))- Z LYA\-5_y_/A+
B B#A

: ,u / C_WB \ (rl/VB)A ] +w(_) =Zw_(y_(_))- Z LYA\_/A +
B B#A

1(YAYA "/_TtLZ aAo),a_o -- (2"7 -- 1)amot_amo_+

+B_#A Oy---_A(_f,UZ Oy----_A(UB)A -- ('y + I)[(O(#VBZ))A + (V(,C3,)UB)A]) . (8.4b)

1 1 ex- E [_,;,(_ov_\ , oovB,_ <v_>_]+ o _- (8.4c)

where both functions WA and WB are given by the expressions of eqs.(7.5).
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The expressionspresentedfor the geocentricproperRF takeinto accountthe propergravi-
tational field of the body (A), the external gravity, and the dynamical properties of the inertial

sector of the local space-time. This presentation of the local metric, eqs.(8.3), will enable us to

simplify the discussion of the results obtained for the two other important quasi-inertial frames

that are widely in use for many practical applications of modern astronomy--the satellite and

the topocentric ones.

8.2 The Satellite Proper RF.

The motion of an artificial satellite may be presented as the motion of a test particle that is

moving along the geodetic world line in the effective space-time with the metric tensor given

by eqs.(8.3). This means that, in order to define the coordinate transformations and the metric

tensor of a satellite RF(0), we can apply the conditions of eqs.(3.26) or those of eqs.(5.2). By

performing the same calculations as in Section 5 for the test particle, we can obtain the post-

Newtonian dynamically non-rotating coordinate transformations linking together the coordinates

(_A) of the geocentric quasi-inertial RFA and those (z p) of the proper quasi-inertial RF(0 ). These

transformations may be obtained in the familiar form:

yO = z 0 + c-2K(o)(zO z v) + c-4L(o)(zO, z _) -t- O(c-6)z O, (8.5a)

y_ = z_ + Z_o)(Z°) + c-_Q_o)(Z°,ZO+ O(c-4)z_. (8.5b)

The solutions for the transformation functions K(0), Q_o), and L(0) were chosen with the same
conditions as those for the functions of eqs.(8.2), namely: the corresponding group parameters

_(0), a_o) and f_0_ are taken to be zero and the requirement of preserving all the conservation
laws in the satellite's local vicinity is fulfilled. The resultant functions were obtained as follows:

- _v(0) v(0)] - v(0)," + O(c-4)z °, (8.6a)

QTo)(z°,zO_(-_ '..z.zOz_) au 1_

+z_ fZdt ,rl ['vn][_a,o, (o) + 2(0[a125]}(0), ] + W_o)(z°) + O(c-4)za' (8.6b)

' ,+L(ol(z°,z') = _z_z__(U} _o_ ou

Z°,l [.x ,1 z.(("y+ 1)V_lo)(/../>(o)-4(W'_) -'&_lo) )-+.<o,,z.i<,, + <o,

f_°e _ . .-. [(')<o,.+ )<o,.- +.<0,..e0,]+o(.-0)zO (.<
where the quantities v_) and a_0) are the geocentric velocity and acceleration of the spacecraft,

respectively. The notation (f}(o), analogously to that of eq.(5.r), denotes the limiting procedure

of taking the value of the function f(z p) on the geodetic world line of an artificial satellite, where

z a --+ 0. The equations for both time-dependent functions z_) and w_0 ) may be determined
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similarly to thosepresentedin Section5. Thus,eq.(5.4)providesuswith the usualrelation for
the Newtonianaccelerationa_0) of the center of inertia of a test body:

_p/0L/\

Analogously, the function wF0) is determined as the solution of the equation below:

_/07g

(8.7)

z o

1 a Z a fd"F1 [c` _]
_V(o)V(o)za(o) + (o)_,] _ [_a(o)V(0) + 2(a[_V_l}(o), ] + O(c-6), (8.8a)

where function _ -_ (_9(c-4) is defined in the same way as functions WA and We in eqs.(5.43)

from the result of the fields decomposition in the local quasi-inertial RF(o ) of a satellite. By
repeating this decomposition as it was presented in Section 4; one may obtain this function as
follows:

7_(zP) = W(zP) + 2@0)E a-_XB(z°,z_') + O(c-6) • (8.8b)
B

At this point, we may present the form of the metric tensor in the proper RF(0 ) of an artificial

satellite defined on the geodetic world line with the generalized Fermi conditions (3.26). Thus,

by substituting the solutions obtained for functions K(0), Q_0), and L(0) into the general form

of the metric tensor gmn(Z p) in the expressions for the metric in a proper RF(0) given by the
relations in eqs.(4.11), we will obtain this tensor in the following form:

(0) __p_ -- --
g00 t _ J = 1- 25/(0 ) + 27_(0) + 0(c-6), (8.9a)

g(°)(zP) = 4,c`_0) + O(c -5) (8.9b)0a

g(°)(zP) .az_l' + 2"YU(0))_ + 0(c-4). (8.9c)a_

Expressions (8.9) are the general solution for the field equations of the general theory of relativity,

which satisfy the generalized Fermi conditions in the immediate vicinity of a dimensionless test

body. By definition, the proper gravity of the test body is negligibly small, then the effective

Newtonian potential in the vicinity of the satellite may be presented as follows:

-- [z _ / OU=U(z°,z')- L +(U}(o)l (8.1o)

In addition, functions _(o) and V?o) were obtained in the following form:

--_(o)(zp) = 7_(zO, z_,) _ LFz_,_ 07"t _ ( _ l 1 z. zZ [77.,

and

-(2_/- 1)a(°)"a(°)2 + -o-z-dz°("/"' L/}(o) (o) '

-- F u/Ol;a\ pc, l(zaz_ ls_z_z_)a_o).-

(8.11)

(8.12)
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8.3 The Topocentric Proper RF.

Theconstructionof thetopocentricRFrequiresa little bit moresophisticatedanalysis.Thus,we
haveto specifywherethis frameis locatedonthesurfaceof theextendedbodyandwhatpointwill
beconsideredasthe originof the coordinates.In orderto find thedynamicalconditionsnecessary
for constructionof the transformationfunctions(analogousto thosegivenby eqs.(3.26)-(3.29)),
oneshouldmakeanexplicit relativisticanalysisof theconstrainedmotionof thetrackingstation
placedon the Earth's surface.This analysisshouldprovideonewith a detaileddescriptionof
the problemof static equilibriumof a test particleon the surfaceof an extendedbody whose
interior is characterizedby the energy-momentumtensorT mn and the corresponding equation

of state p(p). It is likely that the present accuracy of the topocentric radio-metric measurements

does not require this level of generality. This permits us to neglect the geometry of the tracking

station and its weight, and instead, to consider the law of relativistic motion of an atomic time

standard only. Then the answer to the second part of the above question is simple: the origin

of the coordinates of the topocentric RF coincides with the atomic time standard that is used

as the physically measurable time _-. The world line of the clocks may be considered as the

geodetic line of the massless test particle. This suggests that, in order to find the form of the

corresponding coordinate transformation functions, one can apply the same generalized Fermi

conditions (3.26).

As a result, the general form of the coordinate transformations between the coordinates (_A)

of the geocentric RFA and those (_P) - (T, _) of a topocentric one in the WFSMA may be

presented as follows:

y°A = T + c-2KSo(T,_ c) 4- c-4Lso(T, _) 4- O(C-6), (8.13a)

-2 o(c-4), (s.13b)Qso( ,¢ )+

where we, as before, have neglected the associated group parameters Cs0 ass0, and f_o_ and require

that the constructed frame should preserve all the conservation laws in its immediate vicinity.

The transformation functions Kso, Q_o, and Lso in this case will take the following form:

- -_VSo.VSo]J - VSo_ 4- O(C-4)T, (8.14a)

+onS£,r1 a{C,v3 ][_ so So + 2(ot%'nl}s;] + W_o(r) + O(c-')¢_' (8.14b)

(8.14c)
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wherethenewquantitiesv_o and a_0 are the geocentric velocity and acceleration of a particular

< } reflects thatpoint So on the surface of an extended body under question. The notation f s0
this quantity was defined in a particular point, So, on the surface, SA, of an extended body (A).

The Newtonian acceleration of the clock with respect to the geocentric RFA is given as

a a_/ c_U \
asoO-)= -v _5_-;78o + °(c-4) (8.15)

Furthermore, the function w_o is determined as the solution of the following differential equation:

1 _ _-r-a /dt 'rl [_ Z] + 2(O[aV_]} ] + 0(c-6), (8.16)

where the function Z ,_ (_9(c-4) was defined similarly to the function 7_ from eqs.(8.8b):

0

Z(_ "v) = W(C "v) + 2a_ o _ -_XB('r, (_') + 0(c-6). (8.17)
B

As a result, the components of the metric tensor gSm°n in the coordinates (#v) - (T, _'_) of the

topocentric RF take the following form:

gSoS(CP) = 1 - 2._So + 2Zso + 0(c-6), (8.18a)

So p -_ O(c-S),go,_(_ ) -- 4 T/a¢_PSo+

So p
g_z(_ )= r/o,_(1 + 21'_So) + O(c-4) .

(8.18b)

(8.18c)

The obtained expressions, (8.18), represent the general solution for the field equations of the

general relativity on the surface of an extended body in the WFSMA. The effective Newtonian

potential in the vicinity of the antenna may be presented as follows:

USo(CP)= u(_, C) OKs(_-,C) 1Or 2 VSo.V_o =

The functions Zso and ]2So were obtained in the following form:

L +5

0 o
-(27- 1)aso,aSo_ + _ (_fT/,_-_ (N}s ° - 2(c3(,12_)}So) ] , (8.20)

1 a
--a r ,/O_) a 12a .y_(( _ 1 a
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It shouldbe stressedthat moredetailedanalysisis necessaryfor the final solutionof the
problemof relativisticastronomicalmeasurementsperformedfrom thetopocentricRF.However,
we believethat the presentedgeneralapproach,incorporatedin the new formalism,enables
oneto constructthe topocentricproperreferenceframewith well-definedphysicalproperties.
Moreover,the accuracyof the theoreticalexpressionsobtainedhereis far beyondthat achieved
in real astronomicalpractice.This suggeststhat the presentedformulaecouldbeusedfor quite
a longtime beforepracticalneedswill requiretheoreticiansto reconsiderthe presentedresults
in orderto achievehigheraccuracyof the physicalmodellingof the relativisticmeasurements.

8.4 Discussion.

It is generallyunderstoodthat any RF is not a physicalsubstancebut rather a conventional
artifact. ThemainreasonweneedRFsis that theyareconvenientinexchangingtheobservational
dataandone'sdiscoveriesandopinions,whicharethestartingpointsin doingscientificresearch.
In this sense,the mostimportantcharacterof the RFis that it is widelyacceptedandis related
clearlywith the other existingreferences.In addition, it is desirableto representthe actual
phenomenonprecisely. If the first point is respected,what weshoulddo in thesedaysof an
advancedelectronic/computationalenvironmentis to movetowardstandardization,whichnever
meanstheexclusionof otherpointsof view.Ratherit shouldbeunderstoodasonly a scalethat
enablesusto expressobservation/theoreticalquantitiesin a concisemanner.

An applicationof atomic frequencystandardsis the establishmentof atomic time scales.
InternationalAtomicTime is the officialbasisby whicheventsaredated.However,the needto
distinguishbetweentheoreticaltimesandtheir realizations,the needfor a relativistictreatment,
andthe survivalof previousastronomicaltimesgenerateacomplexsituation. Specificproblems
raisedby time scalesand the relationshipsthey havewith oneanotherandwith the successive
definitionsof secondsin differentRFs shouldbe examinedin more detail. Thus, currently
employeddefinitionsof ephemerisastronomyandthesystemof astronomicalconstantsarebased
on Newtonianmechanicswith its absolutetime and absolutespace.To avoidany relativistic
ambiguitiesin applyingnewIAU (1991)resolutionsonRFsand time scales,oneshouldspecify
the astronomicalconstructionsanddefinitionsof constantsto makethemconsistentwith general
relativity. However,up to this time, the VSOPtheoriesof the motion of the planetswere
constructedon the baseof integrationof Lagrange'sdifferentialequations(Brumberget al.,

1993). The development of the perturbative function included the mutual perturbations of the

bodies and was performed up to the third order of the perturbative masses using the Newtonian

perturbative function. The relativistic contributions to the equations of motion were limited to

the Schwarzschild problem. The accuracy reached by such solutions is only a few mas for the

inner planets and less for the outer ones. Due to the fact that the present astrometric accuracies

have reached the mas level, the mutual relativistic perturbations of the planets must be included

in the ephemeris constructions.

In this report, we addressed these and other problems of modern astronomy and have pre-
sented the theoretical foundation necessary for conducting relativistic measurements in curved

space-time in the WFSMA. Our approach naturally incorporates the general properties of the

dynamical RF into the hierarchy of the relativistic RFs and the time scales. Moreover, we ob-
tained the new relation between the time scales, which was obtained to the fourth order in 1/c,

c being the velocity of light in a vacuum. The accuracy of these expressions is at the ps level,

which is the future requirement in many different applications. Thus, this formulation leads

to improved relations between barycentric and geocentric quantities. These expressions will be
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usefulin convertingthe numericalvaluesof someastronomicalconstantsdeterminedin the old
IAU time scaleto new scales.The obtainedresultsnaturally containexhaustiveinformation
aboutthemultipolar structureof thegravitationalfield in the N-bodysystemandenableoneto
modelthe experimentalsituationwith very high accuracy.Becauseof this, weanticipatethat
theresultspresentedin this reportmaybeimmediatelyappliedin thefollowingimportant areas
of modernastronomyandastrophysics:

(i). PreciseVLBI timing measurements.

(ii). Preciseradiometricnavigationoffuturespacemissionsandthecorrespondingdataanalysis.

(iii). Morepreciseanalysisof the binarysystemdynamics,includingmodellingof the coalescing
experimentsandstudiesof the gravitationalwavephysics.

Let us mentionthat therearesomeproblemsthat remainto besolved. It is knownthat
therotationalmotion of extendedbodiesin generalrelativity is a complicatedproblemthat has
nosatisfactorysolutionup to now. Moreover,modernobservationalaccuracyof geodynamical
observationsmakesit necessaryto havea rigorousrelativisticmodelof Earth's rotation. The
currentlyemployedsolutionfor the Earth's rotation problemis valid for restrictedintervalsof
time. Moreover,thereis anurgentnecessityto elaboratea theoryof nutation-precessionmatch-
ing theaccuracyof verymoderntechniques,suchasVLBI andLLR.To do this, onewouldhave
to modelthe transferfunctionleadingto theoreticaldeterminationof the nutation coefficients
whenincludingpredominantgeophysicalcharacteristics(elasticmantle,couplingat core-mantle
boundary,freecorenutation,freeinnercorenutation,etc.). Furthermore,reductionsof measure-
mentsincludedrelativistic corrections,effectsof propagationof electromagneticsignalsin the
Earth's troposphereandin the solarcoronawith simultaneousevaluationof the parametersof
the coronamodelfromgeneralfitting. Thepresentedformalismprovidesonewith thenecessary
basisfor studyingthis problemfromverygeneralpositionsandcouldserveasthefoundationfor
futuretheoreticalanalysis.

As a result,an astronomicalreferencesystemmaybedefinedasa setof the transformation
functionsandconstantsincludingthephysicallywell-definedsetof RFsandtheir mutualrelation-
ships,time arguments,ephemerides,andthestandardconstantsandalgorithms.Theextragalac-
tic, or radio, RFwill be thebasicframefor the developmentof the future ephemeris(Standish,
1995). Achievingmilli- to micro-arcsecondaccuraciesat optical wavelengthswill reducethe
disparitybetweenoptical,radar,andradioRFdeterminations.Thus,therelationshipsandiden-
tificationsof commonsourcesshouldbemuchmoreaccurate.Anothersignificantchangeshould
be the ability to determinedistancesand, thus, spacemotionson a three-dimensionalbasis,
rather than the currenttwo-dimensionalbasisof propermotions.Improvementsin ephemerides
providethe opportunity to investigatethe differencebetweenatomicanddynamicaltime, the
relationshipbetweenthe dynamicaland extragalacticRF,andthe valuesof precessionandnu-
tation. Also, the relationshipsbetweenthe bright and faint optical catalogs,the infrared, and
the extragalacticRFsshouldbebetterdetermined.The theoryof relativisticastronomicalRFs
presentedin this reportwasdevelopedin orderto serveexactlythe above-mentionedneeds,and
it will beusedthe futureanalysisof theseproblemsof fundamentalimportance.
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In orderto accomplishthesegoals,our future effortswill be directedto finalizingthe tran-
scriptionof the resultsobtainedon the languageof the practicalapplications.Wewill establish
the necessaryrelativistic measurementmodelsand will implementtheseresultsinto existing
computersoftwarecodes,aswellasperformingdetailedanalysisof the realdata from thespace
gravitationalexperiments.Theanalysisofthe above-mentionedproblemsfromthe newpositions
of the presentedtheory of relativistic astronomicalRFswill be the subjectfor specificstudies
and future publications.
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Appendix A: Generalized Gravitational Potentials.

The generalized gravitational potentials for the non-radiative problems in the WFSMA are given

in Will (1993) as

£ d3z.._1PO(ZlP__...)U(zp)= I
Iz_- z'_l 'J

VC'(z p) = - f d3z'PO(z'P)vC_(zlP)

Jf d3z,po(zlp)v#(z,p)(z c' -- z'a)(z _ -- z")W_(z p) tz__z,_ I

A(z p) = / d3 z'po(z'p)
[v_(z'p)(z_ Zl/_)] 2 f

X(Zp) = _ j d3z'po( z'p)lz " - z'_l,

[ d3z'po(z'P)( zc_ - z"_)(z 13_ z'_3)Uc'Z (z p) J iz_- z,_lz

• (z p) = -(3" + 1)0z - (33' + 1 - 2fl)02 - 03 - 33'04,

where the other potentials are given as follows:

01 (Zp) = -- / d3z' PO(Z'P)V._.__(z'P)____V.;_(Z'p)Iz_-z'_l

i"
d3 z, PO(Z____lP)._U(z'_____P)O2(z_) = /

IZ__Z,_ I 'J

O3(z p) = [ d3z'P°(ZlP)l-i(zip) O4(z p) = [ d3z ' Po(zlP)P(P(Z'P))
J _ --z-_l ' J Iz--;-: z'----;[ '

= ._._.o_z )po_z :z"lo_lz"--z"'i
In order to indicate the functional dependence in the potentials introduced above, we have used

the following notation: (z p) - (z °, z_'). Then for any function f, one will have f(z p) = f(z °, z u)
and f(z _p) = f(z °, z'U).
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Appendix B: Power Expansions of the General Geometric
Quantities.

In this appendix, we will present the expansion of some physical quantities with respect to powers

of the small parameter c -1. We will use these expansions for linearizing the gravitational field

equations of the metric theories of gravity in the WFSMA.

B.1. Expansion for the Metric Tensor gmn.

The post-Newtonian expansion for the metric tensor gmn with respect to the powers of the small

parameter c -1 in the coordinates (z p) of an arbitrary RF (either a barycentric inertial RF0 or a

proper RF A non-inertial one) may be presented as follows:

goo = 1 + c-2g_ 2> + C--4g_4> -Jr- (...0(C--6), (Bla)

-3 <3> -5 <5>
goa = c goa + C goc, +O(C-7), (Blb)

C--2 _<2> --4 <4>ga_ = 7aZ + YaZ + c ga_ + O(c-6), (Blc)

where q'a_ is the spatial part of the background metric _mn. The notations .Ymn^<k>,(_: ---- 1, 2, 3...)

at the right-hand side of expressions (B1) are the terms of the expansion of gmn with the order

of magnitude ek --_ c -k, respectively. In some calculations, we will omit the multipliers c -k in

order to achieve brevity in the expressions. It should be noted that reversing the sign of the time

z ° --+ -z ° corresponds to the change of the sign of the small parameter e. Because of this, in the

expressions for g00 (Bla) and gaz (Blc), only the terms with even powers of the small parameter

c -1 have been taken into account, and in the expressions for g0a (Blb), only the odd ones are

used. The fact that in expression (Blb) the term g_l> is absent is quite natural. Indeed, even

the main expazlsion for g0a (Newtonian) should not be less than the second order with respect

to the small parameter c -1 (Will, 1993). In our further calculations, we will not be investigating

the processes of generating the gravitational waves by the system of astronomical bodies, so our

expressions for the component g00 in expressions (B1), do not contain the term of order O(c-5).
However, one may easily reconstruct all the calculations to account for this term as well.

B.2. Expansion for the det [gmn] and gmn.

In some calculations, we will need the relations for the determinant of the metric tensor g --

dec [gmn] and the inverse metric gmn. From the expressions in eqs.(B1), one may obtain the

following relations that are valid for any RF:

g = -1 - g_o2> + g_}> + g_22>+ g_32>- g_4> ÷ g_14>+ g_24>+ g_34>+

and

gll g33 --

+ + + + (B2)
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gOO= 1 + g<2>oo + g<4>oo + O(c-6),

gO_ = g<3>o_ + g<5>o_ + O(¢-7),

ga# = 7a_ + g<2>a# 4- g<4>afl 4- O(c-6), (B3)

where the components of the inverse metric g<k>mn are given as follows:

g<2>00 = _ g_:>, g<2>a/3 ..vOZlZ,.vl3r'n<2>
m I I _]zv ,

p>o = g<.>oo= '

g<4>a/3 a/z /3u <4> ^,aa^flA_,p,v,.,<2>,..<2>

_,._<2>.<3> _,._^,.v_<2>.<3> (B4)g<5>0a = _ ,.yCq_g_:2> .+. r 900 _0/_ 4- [ t _A/_ Y0u •

B.3. Expansion for the _mn = X/-_gmn.

For some practical applications, we will need the expansions for the components of density of

the metric tensor _mn = x/-_gra,_ as well. One may easily obtain those from the expressions of

eqs.(B2)-(B4) in the following form:

_oo = 1 + _)<2>oo + _)<4>oo + 0(c-6),

_0c_ ---- _<3>0(x 4- _<5>0oL Jr- O(C-7),

_a;3 = ;ya;3 + _<2>a# + _<4>a;3 + O(c-6), (B5a)

with the components of _mn given as

1A<2>
_<2>oo = g<_>oo + 2- ,

1 -<2>00A<2> 1 (A<4> _ 1(A<2>)2),_<4>00 = g<4>oo + 2Y 4-

1 _<3>OaA<2>
O<3>0a = g<3>0a _<5>0a ----g<5>0a 4- _9

l^a_a<2>
#<2>a2 = g<2>aZ 4- 2_ .-1 ,

1 <2>_A<2> 1 ,_(',_<4> 1 A<2> 2"_ (B5b)

In expressions (BSb), we have introduced the following notations:
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-_oo \_n + +

-k <2>_<2>-- <2> <2> <2> <2>gn _22 ±gn g33 +g22 g33 -

-(gi_>) __ (gS_>)__ (g_:>)_. (B6)

B.4. Expansion for the Gauge Conditions.

The covariant de Donder gauge conditions are given by eq.(3.6) as follows:

(B7a)

or equivalently
0

( v/'_gmn(zP) ) + "7'_l(zV)v/-_gkZ(z v) = 0, (B7b)Oz m

where -_l(z v) is the Christoffel symbols with respect to the background metric "TkZ(Zp) in coordi-

nates (z p) of an arbitrary RF. The relations of eqs.(B5)-(B6) enable one to find the expressions
for linearized gauge conditions (B7b). Thus, for n = 0, we will have

_ ev _<2>

2azo - - _ _-_z,g°" + %°o<a>(zp)+

p,v 0<3> p _-_+_ -y_ (z) O(c-5).

For n ----a, we will obtain

I _ o (g_o_>+_ y_. J _ _z'_"_ + %<3>(z_)+

(B7c)

+h;'_'9'_ <3> (z p) = 0(c-4), (BTd)

ra pwhere _fkl(z) is the components of the Christoffel symbols with respect to the Riemann-flat

non-inertial background metric 'Tmn(Z p) in coordinates (zP). One may easily see that for any non-

inertial RF these components may produce a non-vanishing contribution to the gauge conditions

(B7). This property will be of use in order to write the field equations in an arbitrary RF.

B.5. Expansion of the Christoffel Symbols.

One could easily find the expansion of the connection components F_n with respect to the small

parameter c -1 and present those in terms of expansions Yrnn_<k>' Thus, defining Fkmn as usual:
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whereOn = O/Oz n in coordinates (z p) of an arbitrary RF from the relations (B1)and(B3)-(B4),

we will have the following expressions for the components of the Christoffel symbols with respect

to the powers of the small parameter c-1:

FO(zp) = la _<2> la _<4>__0yo0 + _-0yoo -_

+1 / <2>oo_ <27 g<3>°"o.g_o27)+ o(c-7), (BSa)_,g oogoo-

1_ <2> l f__ <4> g<2>oOoag_o2> )F°a(z p) = _oago0 + -_(oagoo + + 0(C-6), (B8b)

1(_ _<37 _ _<37 __<2>_ 0(c-5). (BSc)r°z(zP) = 5 _o_0_ + _yo_ - _oy_ ) +

1 ^,au_ .<2> 1,._a_G 9 ,_<47 _,a___<37
r_o(ZP)=-_ _,_o0 -_- ,_00 + r _o_o, -

1 _<2>a_ 0 _<2>
-_y u_00 + O(c-6), (B8d)

l_au_ _<3> l_,au_<2> l_au0 0<3> O(c-5), (B8e)
F_(zv) = _')' _'_Y0, + 2 r _.osZu - _, u_0Z +

_ a(0) 1 a
F_v(zP) = 7Z_ + _7 "_,uZgg_/a_<2> + v,guZ__<2> _ Ouy_'<2>h]+ O(c-4), (BSf)

where 72(°) is the Christoffel symbols in coordinates of the Galilean inertial RF. One may make
them vanish by choosing quasi-Cartesian coordinates.

B.6. Expansion for the Ricci Tensor Rmn.

By making use of the expressions of eqs.(B8), one may also find the relations for the expanded

components of the Ricci tensor Rmn(ZP) in coordinates (z p) of an arbitrary RF. This tensor is
defined as follows:

l p l p
Rmn(Z p) = gkPRkrnnp(ZP) = OpFPmn- OnFPmp+ r_rzp - r_pr_.

Then, in quasi-Cartesian coordinates of an arbitrary RF, one may obtain the expanded com-

ponents of the Ricci tensor as follows:

1 ^,#A,,q2 _<2> 1 _,pA,.._2 _<4> ^,/._A,q2 0<3>

_o(zp) = -_ '-',_,_,oo - _y '-'u,_oo + - _o_:_o:,-

1 _ (_<27#A_. _<27"_ 1 _,uA_2 .<2>
-F-',ku '-'._,oo ] - 5_ '-'oo_,,.,,-

1 _ u,_ _'0 "<2>0" _<2> 1 "_)'0 _<2>0" .<2> O(c-6), (B9a)
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(a9b)

(a9c)

B.7. Expansion of an Arbitrary Energy-Momentum Tensor Tan.

At this point, the precise definition for the energy-momentum tensor of the matter distribution

TmB_ is not important. For future analysis, we will accept the most general assumptions concerning

this quantity. Namely, we will work with such energy-momentum tensors, TB,, the temporal, the

temporal-spatial, and the spatial components of which may be presented in terms of the order

of magnitude as follows: TBn(yPB)= (0(1),0(C-1),0(C-2)).

The construction of the iterative scheme is required to perform the power expansion of the

energy-momentum tensor of matter T mn as well. Suppose that T rnn may be expanded with

respect to the small parameter c-; as follows:

T OO= T <°>°° + T <2>00 4- O(c-4), (B10a)

T oa = T<l>Oa + T <3>°a + O(c-5), (al0b)

T aG = T <2>az + T <4>_ + O(c-6). (B10c)

Then, by taking into account expressions (B1) and with the help of relations (B10), we will
get the inverse tensor Tmn as follows:

Too = To_ °> + T3 2> + O(c-4), (alia)

_0_ q_<l> T<3>= -_o,_ + -'o_ + O(c-_), (allb)

where

Ta_ T <2> T<4>=_ + a_ +O(c-6),

To_ °> = T <°>°°, To_ 2> = T <2>°° + 2 g_o2> T <°>°°,

To<3> ,..,<3>,T,<0>00 /" <2> ) T<l>O3,a = _0_ _ + [gay +Taug_o 2>

To<l> T<I>oz T<2> T<2>u_
a = 7a_ , -a# = 7a_7_3A •

(allc)

(Blld)
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Concluding this part, we will present the expression for the right-hand side of the Hilbert-

Einstein field equations, eqs.(4.1), which is given as follows:

1
Stun = Tmn - [gm_ T. (B12)

By substituting the expressions of eqs.(B1)and(Bll) into definition (B12), we obtain the

expansions for the quantity Stun in the WFSMA:

Soo = 1T<°>°° + 1 (T<2>°° g_o2> T <0>°° T <2>'_)2 _ + 2 - _/_ + C0(c-4), (B13a)

Son = 7a_ T <3>°_ + O(c-4), (B13b)

1 T<°>°° (Ta_7_x 1_TaZT._) T<2>"xSaZ = - _aZ + - -

i T<2>oo 9_o 2> T<O>OO
.<2> r<O>OO)
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Appendix C: Transformation Laws of the Coordinate Base
Vectors.

In this appendix, we will present the transformation rules for the coordinate base vectors under

the general post-Newtonian coordinate transformations, which were discussed in Section 3.

C.1. Direct Transformation of the Coordinate Base Vectors.

According to the transformation rules of the solutions of the field equations h('_ and an arbitrary

energy-momentum tensor T mn given by eqs.(3.1)-(3.4), in order to develop consistent pertur-

bation theory for the N-body problem in the WFSMA, one needs to have the post-Newtonian

expansions for the following derivatives:

ox k Oy_ Oy_
Oy'2' oz n' aye

These derivatives form the transformation matrix ),_ of the coordinate bases while the transition

between the different coordinate systems is performed. Thus, for the transition from the barycen-

tric RF0 coordinate base em= (O/Ox n to the body-centric one eA = cO/Oy_, the transformation

matrix is defined as usual: em= e_ApOxP/Oy_ = e_ApAPAm.Then, making use of the transformations
of eqs.(3.5), it is easy to get

0x ° 0 0 _ O 0
AOAo(YPA)= cOy----_A= 1 + -_yOAKA(YA,YA) + _yOALA(YA, YVA)+ O(C-6), (Cla)

_(_)_ ox° o o o
Oy_4 -- cOy_AKA(yOA,Y_A)÷ _y_ LA(YA, YA) ÷ O(C-5), (Clb)

Oxa a 0 0 a 0
_o(_) - oyo - vAo(YA)+ _yoQA(Y_,Y_)+ O(c-_),

_,(_) = a__ a oay---_= _2+ b-_y_Q_(y°'y_) + v(c_)

(Clc)

(Cld)

By using expressions (C1), one could obtain the determinant of this transformation matrix
as follows:

oYA

O 0 O , 0 _ O(c-4) (C2)
-V_oa--_K_(y_,y_)+ b-_y_Q_(y_,yA)+

_(_) givesThe condition det [ t = 0 the boundary of validity of these transformations in their
L

application for constructing a proper RFA.

C.2. Transformation of the Background Metric _/m_.

Relations (C1) are a useful tool for calculating the metric tensor _'_(_A) of the background

space-time in the non-inertial proper RFA from the eqn.(3.4). The transformation rule for these

components is given by the usual expression:

_(_) = o__ 0_
Oy_ cOyn4_/kl(xS (YPA))" (C3)
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Then, with the help of relations (C1), the temporal-spatial components of the background metric

could be presented as

_0_o(_) = _0A21>(_)+ _0A_<3>(_) + V(c-5) =

= v_0(y°) + o--_KA(y_,_)+

0 0 0 0 0 0

+_y_ LA (YA, YY4) + _y_ K A (YA, Y_) _yOAK A (YA, YY4)+

0 v 0 v c9 v 0 v
+VAo_,-_-"_ QA(YA, YA) + "/a_'_.o QA(YA, YA) + O(C-5) • (C4)

aY2 OYA

Expression (C4) contains the terms of two orders of magnitude: c -1 and c-3. However, as we

discussed in Appendix B, in the post-Newtonian approximation for any arbitrary RF, one expects

these components of the background metric tensor to be of the order gOa(yPA) _ O(c-3). This

gives the following condition for the function KA:

V_o(Y °) + oTAKA(yOA, Y_A) = O(c-3) (C5a)

Then, by formally integrating this last equation, we may find the following expression for the

function K A :

KA(Y°, Y_) = PA(Y °) - VAo_" Y_ + O(c-% °- (C5b)

The result (C5) considerably simplifies the calculation of the transformation rules between the

different RFs. Thus, taking into account relation (C3), one may obtain the following expression
Afor the tensor _/kl(_A)"

a 0
A 0 2.._yOAKA(YA, YA) + I)Ao,V_Ao..._-

_/oo(yA,y_) = 1 +

0 o 0 o 2

+2_yoL_(_,yy_) + ,(_-.oK_(_A'YY_))oy_+

a _ o O(c-6), (C6a)
+2VAoZ_yOAQA(YA, Y_A) +

0 o 0 o _,
,'_oA ( y OA, YUA ) ---- "_y_ L A ( Y A , YY4 ) - V Aoa "_yOA K A ( Y A, Y A ) "_-

o (:9 v o+VAov(YA)_y_ Q A (YA, YUA)+ "lay__ QuA(yOA,yuA) + O(C-5), (C6b)

A 0
")'aZ ( Y A , YUA ) = "TaZ -F V Aoa V A o z"_-

0 v 0 _'
+_a_'_..z Q A (YA, YA) + YZ_'ay_ Q_A(y OA,Y_4) + (9(C-4) • (06C)

OYA
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Relations(C6) arethe KLQparametrizationof the metric "),An, which forms the background
Riemann-flat space-time in the proper RFA:

R_m_(_) =0.

The functions KA, LA, and Q_ will be chosen in order to separate the forces of inertia from the

gravitational forces that are measured by the observer in this RF.

Relations (C5) are a useful tool for simplifying the result (C2) as well. Thus, for the deter-

minant of the transformation matrix, we will get following expression:

rv _1
d_tL:,:_m(_A);= 1+ _-_.oK,_(_,A,YA)+

OYA

0 @_,o
+VAo_V_o+ _ A_yA,y_)+O(c-4) • (c7)

C.3. Inverse Transformation of the Coordinate Base Vectors.

Using the transformation rule for the base vectors, ePA = O/ayPA, of the proper RFA to those

of the inertial barycentric RFo, ep = c_/Ox _, given by expressions (3.18), one easily obtains the
inverse transformation matrix A_4_(xP ) = ao n/._x TM for this transition as well:YAI _"

o_o

o _ (_o__ _o(_0))-

-_o_(xO)Q_(_0__ _o(_O))]+o(_0),

OyOA=

0 rl 0 2"0
+_x_[_o_[_ ,_"- 4o(X°))-

__o_(_o)Q_(_o__ 40(_0))]+o(__),

o_ o (x°,_ 4o(_°))+ax---_= -V_o(_°) + _ [ _ Q_

ay_ cao_ __ +_ [- Q_(_O,x-__o(X0))+

+_o(xO)K_(_O,x___o(xO))]+o(_-41,

(C8a)

(csb)

(CSc)

(CSd)
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wherewehavepartially takenthe result of (C5b)into accountin a formof the relation

(_x YA

C.4. Mutual Transformation Between the Two Quasi-Inertial RFs.

The expressions for the transformation of the base vectors between two quasi-inertial RFs (_)

and (_A) may be obtained from relations (3.19). These transformations are given as

OYOBoyo = 1 + O0"_KBA(yOA'Y_A) + _yOALBA(yA'yA) + O(c-6)'yA0 0 (C9a)

0 0 u

°Y°oy?4- vBA°_(Y°)+ 5-_Y_Lsa(yA'yA) + O(c-5)' (C9b)

Oy_ = v_ , o_ayo B_o_yaJ+ yAQ_A(Y°'Y_)+ O(c-5)' (C9_)

Oy_ O _ o
= ,_ + _-:_-Q_a(y_,_) + O(c-_), (C9d)

OY_A _,'UA_,A

where the functionsKBA, LeA, and Q_A are definedby expressions(3.20).FYom theseexpres-

sions,(C9), one may obtain the determinant of the transformationmatrix ABAm(_A ) for the

transformationsbetween two differentproperRFs asfollows:

0 0 u

v A 0 v 0 0 Q U , o,
+ BAo(YA) SAo:_(YA)+ _y_ BAI,YA Y_) + 0(C-4) . (CIO)

:theconditiond_[_'k_,_(_)]=0givesthebounda_ofvalidityofthesetransformations.
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Appendix D: Transformations of Some Physical Quantities
and Solutions.

In this appendix, we will present the transformation laws for the gauge conditions, the com-

ponents of the Ricci tensor, and the components of an arbitrary energy-momentum tensor of

matter of the matter distribution T mn for the unperturbed solutions of the field equations h (°)

and for the interaction term "-ranhint, eqs.(3.1)-(3.4), under the general coordinate transformations

discussed in Section 3 of this report.

D.1. Transformation of the Gauge Conditions.

With the help of eqs.(F1) and the expansion of the metric tensor gmn given by eqs.(B7), we may

obtain the relations for the gauge conditions expanded in a power series of the small parameter
C -1"

(i). In Cartesian coordinates of the inertial RF0, the background space-time may be taken in

a simple form of the Minkowski metric: _f(m°) = (1, -1, -1, -1). Then the power expansion

of the gauge condition of eqs.(BT) may be presented for n = 0 as follows:

1 o k ) (Dla)
2 ay° ay_ o.

and for n = a as follows:

1o _C (g£> + -
0y_

__. ,___0_0<3> p 0(c-4) (Dlb)
, "7 OycAg_,. (x)= .

(ii). In an analogous manner, one may obtain the expressions for the gauge conditions in coor-

dinates (_A) of the proper RFA of body (i). For n = 0,

1 0 (_y <2>,--, g_02>(_A)) yc.0___g@3>(_A)+2 cgy°A (, ge_, LY'A)-

: O(c-5), (D2a)

and forn=a,

1 a _ 0 [ <2>, p, ,yE_g<2>(_.]]_,y{v,y,_ 8:9
oy A \ c,y-A

+ (a_o + _:' 02Q_ =o(c-4) (D2b)

D.2. Transformation of the Ricci Tensor Rmn.

With the help of the expansion for the components of the Ricci tensor, eqs.(B9), one may obtain
this tensor in coordinates of the different RFs.
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(i). Thus, by makinguseof the relationsfor the covariantde Dondergaugeconditionsin
coordinates(xp) of inertial RF0, eqs.(D1), one may present the components for the Ricci

tensor in the following form:

2

0 2 g_o2>(xp)_ 1^_ O .<4>(_.p_Roo(z v) = -2 7_'_Oz,,Oz_, _ r Oz-_--_fiOz_oo_._ J-

1 ,Att_yS.<2>(_p h 0 .<2>(_ph__

>(xp) _. " _u k- JO%-_--_,_00k_ .20x 2g_02 +

1 _ O <2>(xp _ CO _<2>(xp_ O(c_6) ' (D3a)

2
Roa(x p) = l_v_ 0z _<3>/..p_ + O(c-5), (D3b)

-2 y COx_,COx),Yoa _ j

02 .<2> f xp" I
Raf_(x p) = -_..ff:_COx.-_Oxy,y,__ _ j + O(c-a). (D3c)

(ii). From relations (D2) and with the help of the expressions for the Ricci tensor given by

eqs.(B9), one may get this tensor in coordinates (_A) of the proper RFA as well:

2

Roo(y_) = 1 v_ CO <2>,v_ 1 v_ 02o _ _g°° (_)---'_"/ _go0 (.brA)--'_") ' <4>
z OYAOYA YA YA

2

2 1 _/k_,uS,.,<2> CO _<2> (_,P _+
1 (3_ .<2>(,tffA) + 2" . s_ (_A),_ _-h _5_oo _.._A,'
2 COyO2_oo aYAaY A

1 _ O <2>, _,, O <2>,'---,+
-_'7 _..A goo (Y'A)_..u go0 I,Y'A)
,_ oy A OYA

__ CO2,_u \
(:3 [CO2KA .TuA CO2LA (a_4o + u), t¢A "_'--

+ { (a_Ao+ ,)y ), CO2Q_A '_ (9 <2> -o_CO_; b---__°° (_) + O(c-% (D4a)

(:32 <a> 1 (3 (a" 7 _':_ CO2Q_
no_(_) =-_'W' O_A___o_ (_) + _'7_ CO_oA- _ Ao+ CO_y_CO_)_)+

1 CO {CO2KA 7u._ CO2LA (a_o +.),u_, CO2Qt'A )+-_-_y_ \ ayOA---"_ + OyUAOy)_+ VAou OYY4COY_ ) + O(c-5), (D4b)

(92 .<2> (_,P _,+

aYAOYA

CO2.'-,t_

D.3. Transformation Law for an Arbitrary Energy-Momentum Tensor T ran.

In this subsection, we will present the power expansion for the components of Srnn = Tan-½granT

defined by equation (B12).
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(i). By assumingthat eachbody (B) in the systemmaybe describedby the reducedenergy-
momentumtensorSBmn, one may easily obtain the total energy-momentum tensor Srnn for

the entire system. Thus, in the coordinates of the inertial RF0, this tensor may be presented
as follows:

Sm_(xP)= Z Ox._&_
B

Then, with this relation above and from eqs.(B10)-(Bll), (B13), and (C6) for the coordi-

nate transformations to the barycentric inertial RF0, we will obtain the following result:

1 _B /_<0>00, q ,-,.<2>OOzq(Xp))+s00(zp) = _ _1_ tyB(x_))+ IB tyB

+2 9_0_>(_ (x_)).Tp>°° (_ (z_))- _.T$<_>¢"(_(x _))-

k Ox

\
_ 4

"fel_VeBo($ O) T_I>O#(yqB(XP)) ) + 0(¢-4), (D5a)

( <°>°° q P ) 0(c-3)' (D5b)s0_(_) = Z _o. T/_'>°"(Y_(_))+ _0(_°) T_ (YB(_)) +
B

1 TB<O>°O(yqB(xP)) O(c-2). (D5c)&9(__) = -_'r_ Z +
B

(ii). One may obtain the relation for the energy-momentum tensor of the entire system in the

coordinates of the proper RFA as follows:

(.:.)yk (:gy/ SB(Y_(_A))= ""¢mAn(_A)+ E dgy_ oqy_
B B#A

Then, making use of the formula above and from eqs.(B10)-(Bll) and (B13), the expres-

sion for the quantity Stun in coordinates (bPA)of the proper RFA, with the help of eqs.(C7),

may be presented as follows:

1

(T_°>°°(_A) + IA WA)*Soo(_)= _ ,-,.<2>oo.p._

• T<2>eu, p _'_ +
+2 g_:02>(_A) T_°>°°(y,_)-%_, A kYA))

, (+_ <0>00 q P ,-_<2>00, q

<2>eu q p
<2> q p T<O>OO(_q roP_ %.T_ (yB(yA))++2900 (YB(YA))'B kYBkUA]]--
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u 0 0
+ [20"--_ KBA(yOA, Y_A) -- VBAo(YA)VBAou(YA)] " _-<0>00r.q.,s,UB (YPA))+

L CgyA

o )+4_.vsA0(YA)T_I>°"(Y_(_)) + O(c-4),

So_(ypa) <i>o.

8 (ys(_)) - V_Ao(YA)T_ (YB(_A)))++ _ "Yau r<l>°u q o <0>00 q O(c-3),
By_ A X

1(  o oo,, )
BCA

(D6a)

(D6b)

(D6c)

D.4. Transformation of the Unperturbed Solutions h(m°).

In this subsection, we will obtain the transformation rules for the unperturbed solutions.

(i). Using the following notation for the second term in expression (3.1):

Oy_ Oyls h(O)B ryq rxp_ _
H_.,,,xp(_O)( ) = g"_ Ox TM Ox n k, _ S_ H,

B

(o) pfrom eqs.(C6), we will obtain the relations for components H_n(X ) in the coordinates of
the inertial RFo as follows:

B

- "'_soo ,_,B(x_))-

e 0 u _(0)<2> {,, q (,.,,p,_'_

A(O)<3>(yq(xP))+VBo(X )VBo(XO).,_Beu ,UB,_ ,,] +O(C-6), (D7a)-2V_o(_°)•'°Bo_

/h(O)<a>

B

+_o_(_°) -,oB00'_(°)<_>(Y_(x_))-_5o(_°)h<_<_>(Y_(_;)))+ O(_-_), (D7b)

---- h(O)<2> (yqB(XP) ) "_ O(C-4). (DTc)H(°) (xp) _ '°Bc,Za_
B
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(ii). Thetransformedcomponentsof H(m°)(_A) in coordinates (_A) of the proper RFA axe defined

as in eqn.(3.4):

H(O)ro2__ Oxk OxZw(o)r_qlo2_ Oyk Oy_ (O)B q

OYA B YA Oy_

B#A

Then, for these components, from the relations of (C7), one may obtain the following
result:

'°AOO WAJ+--AO0

+ _ 'osoo
B#A

0 o _ ,(0)<2>, q, p,, _ o (0)<3> q
nBO0 _YB_x ))+20--- AKBA(YA,YA)" + 2 BA0(YA)"

e 0 u h(0)<2> ) + (D8a)
/

H6(o),p, .(o)<3>, q, (h(°) <3>" q _,2'_
a [YA) = nmoa kYm) + E t BOa _,YB_A)J--

S#A

• h(O)<2> , q ,-- ,,'_
_VSAoc_(yO) .(0)<2>, q e 0

nBO0 lYB(YPA))+ VSAo(YA) " Bm [YB[VA))) + O(c-5), (D8b)

(0) #0)<_> _2 _ h (°)<_> _ qH;z(YPA)='°AaZ WA_ + _ SaZ wB(YPA))+O(c-4) • (D8c)
B#A

D.5. Transformation Rules for the Interaction Term h_nt
-- rrt rt °

hmn(x (_A)) in coordinates (_A) of the proper RFA areThe components of the interaction term int s

given as follows:
Oz _ Ox _

int int s P

hmn(YPA)- Oy'_ Oy_ hmn(x (YA))" (D9a)

By making use of expressions (C6), the components of h_m_nwill take the following form:

hint_ p\ -int<4>, s¢ _)\x 0(C-6),oo tYA) = aoo t x tY'AJ) + (D9b)

hint(.p, 0(c-5), intOa kYA) = haB (YYA)= O(c-4) - (D9c)

D.6. Transformation for the Energy-Momentum Tensor of a Perfect Fluid.

Let us define the model of matter distribution of a body (B) in its proper RFB by the tensor

density _nn given by

iP_n_n(y_)= v/_([pBo(1 + I'i)+ p]umu n- pgmn), (DIO)
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whereall the quantitiesenteringthe formulaabovearecalculatedin thecoordinates(_) of the
non-inertialproperRFB.Then,onemayobtainthe followingpost-Newtonianexpansionof the
tensorT'_ n in coordinates (_) of the proper RFB:

T°°(_B) = PBo[1- V_,Vu + YI + 2(EU c
C

c OY°

cgKs
1 _ 0(c_4) ]_VBouVBo) +

1 . p 0(c_4) ]_VBo_VBo) + -- +
PBo

Tc_Z(yPB) = PBoVC'V_ -- pT°_Z + pO(c-4).

(Dlla)

(Dllb)

(Dllc)

Then, by using these relations, one may easily obtain the expressions for the right-hand side

of the Hilbert-Einstein gravitational field equations in the form of the quantity Stun, defined by

eqs.(4.1), (B13), and (D5)-(D6).

(i). From eqs.(D5) and with the help of the expressions of eqs.(D10), we obtain components

of the quantity Stun in coordinates (x v) of the barycentric inertial RF0 as follows:

1
s00(x°,x_)= _Z PBo(Y_(xP))×

B

x[1 + II- 2_-'_Um-2v_,(xV)v_'(xp)+3P+O(c-4)], (D12a)
B' P

SOa(xO, x_')=_a_-_pB(xO, x_'--Y'Bo(ZO))[V_(XV)+O(c-3)] , (D12b)
B

1 x v [1 O(c-2)] (D12c)s_(x°,x_)=--_'yo_ZpB(_°, -y_0(x°)) +
B

where the total mass density of the system is denoted as

P : E PBo"

B

(ii). In an analogous manner, but with the help of the expressions of eqs.(D6), we may get the

relations for tensor Stun in the coordinates (_A) of the proper RFA:

1
SO0(yOA,Y_A) = -__-'_RB(yqB(_A))[1 + I-I - 2 __UB,+

B B'

OKA 3p O(c_4) ] (D13a)+2 oy---__- 2_.(_)_,(_) + VAo.d0+ -p +

Soa(yOA,Y_A) ='Tc,_ _"_ps(yOA,y_ + Y_Ao(yOA))[v_(yPA) + O(C-3)], (D13b)
B

1 Y_Ao(yOA))[1 + O(c-2)]. (D13c)s_(y °, y_) = -_ Z pB(y°, y_ +
B

It should be noted that the functional dependence of the densities in expressions (D12)-(D13)

reflects the positions of all the bodies with respect to different RFs in the sense of Dirac's delta
function.
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Appendix E: Transformations of the Gravitational Potentials.

To establish the transformation properties of the unperturbed solutions for h(m°)A (given in Ap-

pendix A) for transitions from coordinates (_A) of the proper RF A to those of the barycentric

RF0 (and backwards), one should take into account that these solutions contain the integrals

over the three-dimensional volumes of the bodies. For this reason, we should first derive the

transformation laws for generalized gravitational potentials. The powerful technique for obtain-

ing these rules was elaborated for some special cases of transformations earlier by Chandrasekhar

_z Contopulos (1967) (see also Brumberg & Kopejkin, 1988a; Will, 1993). It was noted that the

transformation of the integrands should include the point transformation combined with the Lie

transfer from one hypersurface to another. This transfer should be produced along the integral

curves of the vector field of the body matter's four-velocity. The most sophisticated transforma-

tion at the post-Newtonian level is required for the Newtonian potential LB. We will extend this

technique to the general case of the coordinate transformations, which was discussed in Section

3 and in Appendix C.

For the transformation from the proper RFA to the barycentric one, RF0, with the help of

expressions (3.18), one may establish the relationship between the observer's spatial coordinates

and those of the integrating point as follows:

1 1(ly_ - y_l = Jx_- x'_l 1-
_,z(x0,_,.)vs0_(x0) (x_ - _'z)(_ - x'_)

Ix_ - x,_12

ix,, _ xn,[ 2 + O(c -4) . (Ela)

By using the same procedure as above, from eqs.(3.19)-(3.20) we may obtain the expression for

the observer's spatial coordinates and those of the inte_ating point while the transformation

between two proper RFs (corresponding to the bodies (A) and (B)) is being performed:

f-

1 __ 1 • |I+
L

__Q_(yOA, y_.__YVBAo(yOA))] ) (YfiA--YI_A) 0(c-4)]"ly_- y'XI2 +
(Elb)

For the transformation of the integrand, we should take into account the property of the

invariant elementary volume (Kopejkin, 1988; Will, 1993):

where _ is the determinant of the metric tensor and u ° is the temporal component of the

invariant four-velocity.
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From expressions(B2) and the componentsof the metric tensorof the order_ c -2 in the

different RFs (given by (4.8) and (4.11)), we will get

: 1 ÷ 2 EUB(yaB(xP)) + 0(c-4),
B

(E3a)

and
o # o

= 1 + _O--_.oKA(yPA)+VAo_(YA)VAo(YA)+
UYA

o _ 2_ O(c-4)+ _--_QA(_) + vs(y%(_)) +
OYA B

The components of the invariant four-velocity are defined as follows:

uk(z p) = vk(zP) [g0o(zV ) + 2go_(zP)vC(z p) + g_c(z'_)v_(z'_)v_'(zP)] -1/2,

(E3b)

(E4)

where vk(z p) : dz_/dz ° = (1,2_). From this last expression and eqs.(4.8) and (4.11) one may

obtain the relations for the component u ° in the coordinates of the barycentric and the observer's

proper RF as follows:

1
u°(x p) = 1 + _ UB(yPB(xP)) -- _vz(xP)v#(x p) + O(c-4), (E5a)

B

and

uo(_A) = 1 + __UB(yqB(yPA))- 1_vZ(_)_'(_)--
B

1 o v _ o O__AKA(YPA) + O(c-4).--5_Aoa(YA)Ao(YA)-

Then making use of the expression of eqs.(E3)and(E5), we will have

(ESb)

_--g(xP)u°(x p) = 1 + 3 _--] UB(_B(XP)) - 1_z(_p)_(_) + o(c -4)
B

(E6a)

and
1

_u ° (YPA)= 1 + 3 _"] UB (y_ (yPA)) - _v#(yPA)v# (YPA)+
B

cO 2 1 0 v_ 0 O(c-4).+ _-L_QA(_) + _Ao_(YA) Ao(YA)+
coy A

(E6b)

From relation

established:

d3yIB = d3x, _u°(xp) =

( co _(_0,_,_ y_0(_0))+o(_-4))= d3z ' 1 - VBo#(XO)v#(x °, x 'u) -- _x_zQ B -

(E2), the following transformation laws for the elementary volume may be

(E7a)
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and

v/_g(y_(_))_o(y_ (_))

o fl= d%_ 1 + VBAo_(YA)(VAo(_o) + v%O,y:_))+

0 _ o + _, o 0(C-4)) (ETb)

Since the quantities pB(z°,z_'),YI(z°,z_'), and p(z°,z _) from the potentials defined in Ap-

pendix A are all measured in the co-moving local quasi-inertial frames, they are transformed as

scalars, and for any given element of fluid, the following relations hold:

p.(x °,x_) = pB(v_(xp)), n(x0,x_)= n(v_(_p)), p(_0_.) = p(y_(x_)). (E8)

Finally, the expressions (E1)and(E7)-(E8) enable one to present the transformation law for

the Newtonian potential as follows:

and

_2

us(v°, y_) = u.(_°, __)+ _g0(_°)•o--Sb-_ax_nS(x°,x_)+

+/._'_"(_°'_'_- _o(_°))_ [Q_(_°'_ - _°(_°))- Q_(_°'_'_- _°(_°))]l_- _'_ ÷

+O(c-6), (E9a)

u.(v°, v_) = u.(v°, v_)-

z 0( o o 0_ 0
--V_A0(VA)\O---_--v%(V_)_--:_'"/ _---:-_-__ (vO'Y_')-

OVA J OVA

d 3 , o _, o cO (-Q_(y°A,Y_'A)--Q_(y°A,y_)]_
%

O(C-6).+

The Newtonian potential and the super-potential in the formulae above are given as follows:

B d3 ztU_(z°'z_) = Iz_- z'_l ps(j/.(z'_)) + o(_-6)

XB(zO' z_') = -- fB d3z'pB(Y_(z'P)) " Iz_" - zn'l + (-O(c-_)L_'

where LB is the proper dimensions of the body (B).

(E9b)

(E9c)

(E9d)
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In order to establish the transformation properties for the potentials

V_(z °, zV), _lB(Z °, z _') and O0_2zO2XB(Z°, zV),

one should find the transformation rules for the spatial components of the four-velocity uk(z p)

while transiting between RFs. Let uk(x p) and uk(_A) be four-velocities of matter measured in

two different RFs under consideration. Since they are related by the usual tensorial law,

0 TM d m 0 mk(.rp_ oy_" YB YB dxk
um(yPB)=- '- J COXk _ _ds = Ox k ds' (El0)

the following expression for the transformation of the invariant four-velocity may be obtained:

u0( ) = _ ay° (Ena)
ds Ox k ds '

dYeB cOY_Bdxk (Ellb)
u_(YPB) - _ -uO(YPB)v_(YPB)= _ "_s

The last two equations provide one with the result for transformation of the three-velocity, as

follows:
u°(z q) 0 0

By collecting together expressions (E5) and (C8) and substituting them into eq.(E12), one may

get the relation between the components of the velocity while the transformation from the proper

RFA to the barycentric one, RF0, is performed. This result may be written with the required

accuracy as follows:

v_(yqB(XP)) = va(x p) - V_o(X °) + 59(c-3). (E13a)

In an analogous manner, but with the help of the equation (C9), one obtains the relations for

velocities in two different proper RFs:

va (Y_(Y_))

--a_o(yOA)[KA(yPA) -- KB(YPA)] + 50(c-5). (E13b)

Then, based on expressions (El) and (E13), we may get the expression for the transformation

law for the vector-potential V_:

V_(Y°B, y_) = V_(x °, x _) + V_o(X°) • Us(x °, x _) + O(c-5), (E14a)

and
e 0 =V e, o t_ e o .U 0 vV$(YB,YB) B_YA, YA) -- VBAo(YA) B(YA, YA) + 0(C-5)"

From expressions (El) and (El3), we obtain the relation for the potential _IB:

(E14b)

146



• IB(y° ,y_) = _l_(x °,x_)- 2VBo_(X°)•Y$(x°,x_)-

and

-VBo,(=°)V_o(=°)•uB(=°,=_)+ 0(c-6),

¢_B(y°,y_) = _B(y°, y_) + 2VBAo,(y°) •Y$'(YA,°YA)-"

(E15a)

0 £--VSAo_(yA)vBAo(Y°)-Us(y°, y_) + O(c-6). (E15b)

Finally, for the transformation of the superpotential XB from (El), (El2), and (C8)-(C9), one
obtains

0y_B_XB(yo,y_) = 02

02

+2@o(_°)o%-7_o_oxB(x°,_"1+

and

2

+V_o o _ o 0 o(=)_Bo(X)O_--i75-fiO_XB(_ , z_)+ 0(_-6),

_B(yO,y_)= a--_2 (Y°)0-_ XB(Y°,Y,_)--ayo_:_8(Y°,Y_.) a_o

02
e 0 0

(E16a)

2

e 0 V _ 0 0 0

+VBAo(YA)_Ao(YA)Oy_y_ _(_' _Y_)+ 0(_-_1" (E16b)

147





Appendix F: Christoffel Symbols in the Proper RFA.

In this appendix, we will present some expressions that are in use in various parts of the present

report.

F.1. Christoffel Symbols With Respect to the Background Metric -yAn.

The connection components (or, so-called, Christoffel symbols) for the background metric "Ylrn(_A)

in the coordinates (_A) of the proper RFA are defined as usual:

aA 1 kp 8:4 A OpA.yrnn(ypA)),%,,,,(_)= -i.yA(_)( _.y.,_(_)+a2-y,.,(_)-

where a A = a/a_ Then from eqs.(C6), one may obtain expressions for the Christoffel symbols

for the metric tensor _flm(_A) as follows:

OA a2K_____A 02LA OLA

700(_)- ayO2 + aAo_V_o+ ayO_ a_o ay_A

(02KA _ _ laKA (O2Q_A aQ_
--_,ayOA-----T+a.4o_Vao}t_yOA+VAo,V_o)+VAo_{,Oy02 aAo_oyO]+O(C-7 ), (Fla)

OA c92L A 02 Q_A [ O K A

._o_(_)=-aAoo+ ayoay-------_+VAo_a_oay_+ a_0_ a-_- + _0_v_0)+ o(c-6), (Fib)

._oA_(_)_ ay_ay_a2(LA + VAo_,Q_)+ O(c-6), (Flc)

02Q_ _, aQ_ _ rO2KA

"7_oA(yPA) = a_4o + ( i)yoA2 ,_Ao l)y_4 ) -- VAo_, o---_A2 + aAo),V_o) + O(C-6): (Fld)

a_Q_
"Y_2(_)= V_o"Ao_+ ayoay_+ o(_-_), (Fle)

.A(_) =_.<o> a_Q_ + o(_-4), (£1f)

where _<0> is the Christoffel symbols in coordinates of the Galilean inertial RF (by choosing

the quasi-Cartesian coordinates, we may make these symbols vanish: -a<0> = 0).)'_w

F.2. Christoffel Symbols With Respect to the Riemann Metric gA n.

From the expressions of eqs.(B8), one may also obtain the connection components F_Z(_A) with

respect to the total Riemann metric gzm(yPA) in coordinates (_A) of the RFA:

O(aKm 1 _ o _- +r°0(_)= a-_\-b-_ +5_o_0 _U.(_A,_A)]B

a (8LA I(OKA'_ OQ_ 1.<4> )

a {aKA 1 _ )_
B
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[OLA COKA CgQA_ OQAA x"', V)_, o ]-[_V_ -_o_o_o +-_-y_ +,_o_-y_ +4_ _y_,y_)×
B

"5-:wUB(YA, YVA)) + O(C-7), (F2a)
B OYA

FO,_(YPA)=--aAoc,-- _B __AUB(y OA,y_4)+

0 (OLA 1 (OKA'_2 OQ_ I.<4> )

B B

02

o o)+ _ 2._._ V_(YA,Y_)+ 2V_-_y_AV_(YA,Y2)-V_._U.(Y_,Y2) +V(c-_), (Fee)B

r_o(_) = _o + _"__ _--_u.(_°, _ff)-
B

( OLA 1 (COKA '_2 OQ_A 1 _<4>, o )-_o-_,_o--_+_-&-_ +_o_o-_+5-oo _,_)+

( _-_ (_ + + + _ (_, _))v _ - _ 4_-_ -+_yOA 7 _' Ao_QA) _ OKA oq_ ,_ o _,

B

0 o _,

a2Q?_
YA YA

2-c_'- b VV , o _,, ,_ 0 o )B \ OYA C'YA

r_(_) = ^,a<o> a2Q_

B _k OYA _YA

where the quantity TT<4>, 0_00 LYA,Y_) comes from the relations for the metric tensor in coordinates

of the proper RFA, eqn.(4.11), and is given by relation (4.12).
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Appendix G: The Component 9A and the Riemann Tensor.

In this appendix, we will present the expressions for the flat metric 7A(_A), the "inertial friction,"
l, int<4> [,_p_term and the interaction term '_00 _ ;-

G.1. The Form of the Component 3,A.

By substituting in the relations of eqs. (C6) the solutions for the transformation functions KA, LA,

and Q_ that are given by the expressions ofeqs.(5.11),(5.12),(5.23),(5.34), and (5.35), one obtains

the following relations for the components of the metric 7A(_A):

A<2> z 0 0 0 , 0 fl 0

7oo _YA,Y_)= 0---_AKA(YA,Y_)+ _Ao_(YA)VA0(YA)=

A / OUB

B#A

A<4>_ 0 v, ___ (_ _ +2VAo_(YA)_yOAQA(y,y_)=O0 _ 0700 kYA,YA) = 2 Ln(yO, y u) + KA(yO, yU)/2

: YAYA" %;3aAo),a_Ao --aAoUaAoZ + Z Oy---_A[%'_<_yOA] 0-4 ] +
B#A 0

_,/OW_\ B
--YA\_y_ /o-(Woo)o+ 2_ A+

+2 _--_ \_YA LA{L}(yOA) + VA°" " -_yOAQA{L}(YA)/ " + +
(alb)

I_>3

A<3>/ 0 _ & 0 v
7o_ _yA,y_) = LA(y°,y') - _Ao_(y°) KA(y, y )+

oY A

+v , o, 0 ,.,_, , o 7 a_ ______AAQ _A y O, y _ ) =Aou_YA)_o__y_ t4Aty , yU) +

= --47au E [Y_A_ OV_ \ V" A

1 OUB

B#A

+E °) + + +
l>_3

+O(c-5) + O(l_,_lk+l), (ale)
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0 0 0 u 0 v 69

_A<2>(yo,y_)_ = vA0_(yA)vA0_(y_)+ _ 0--_QA(YA,YA)y. + _ Oy_Q_(yo y_) =

r _lOUB\ (Ua}o]+ A=-2-y,,_ X: [yA\o-_//o + °_+
B#A

o 0 y{AL} O(c_4) O(lY_ik+_)._ 0 o _QA{L}(yA)0___) + ++ Z ('_o_Q_{L}(Y_)_.._+
l>3 " OYA

(Gld)

G.2. Lemma. The following relation holds for any values of k:

_{K}_ b{K}= Z(_)k-_
s=l

Pkk-S+ l

l)!a{S_1 } (a_, _ b_,) {K-S+I}(s- l)!(k- s +
(G2)

where a {K} = aVla_'2...a v_, and PP is the operation of all the possible arrangements ofp different

objects from n ones.

Formula (G2) may be proved by direct verification of several arbitrary values of s. Thus, for

s = 1 and s = 2, this formula is trivial. For s = 3 and s = 4 from the right-hand side of equation

(G2), one may check that these relations hold as well.

Indeed, by straightforward calculation, we have the following result for s -- 3:

(aL'_ _ b"_)(a_'2 _ bt'2)(a_'3 _ b_'3) _ aU_(a_'2 _ bt'_)(aU3 _ b_'3)_

_a_'2(a_'3 _ b_'3)(a_'_ _ bY,) _ aVa(a_'_ _ b_'_)(a'2 _ b"_)+

+ a _'l a V2(a _'a _ b_'a) + a_': a _'a( a _'_ _ b_'_) + a_'_ a _'_( a_'_ _ b_': ) =

= at'_aU_a"_ _ bt'_bt'_b_'_ = a {3} _ b{3}.

And for s = 4,

_(a_'l _ bU_)(at'_ _ b_':)(at'a _ bt'_)(at't _ bt'_) + a t'_ (a_'_ _ bt'_)(ar'_ _ b_'_)(a_'4 _ bye)+

+a_'2 (a_'a _ b_'a)(a_'4 _ b_'4)(a_'l _ b"_ ) + aU3(a u4 -- bU*)(a u_ _ b_'_)(aV: _ b_'_)(aVa _ b_'a)+

_a_'_aUt(aU_ _ b_'_)(at'_ _ bVa) _ a_'_a_'a(a_'_ _ bV_)(aU* - b_'4) _ aU2at',(a_'l _ bt'_)(at'a _ bt'a)_

_aU_at'_(aU_ _ b_'_)(aU_ _ b_'_) + a_'_a_'_a _'_(a_'_ _ b_'*)+ a_'_a_'aa_'*(a u_ _ bt'_) +a_'aa_'_a _', (a_'_ _ bU_)+

+aU4at'_aU2 (aU3 _ bu3) .= aUlaV2aUaaU_ _ br'_ bU_bUabU4 = a {4} _ b{4}.
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Then by induction, one may extrapolate the validity of expression (G2) for any s > 4.

Making use of the relation (G2), we will simplify the form of some expressions for the metric

tensor in the proper RF A and the interaction term in the coordinates (x p) of the barycentric

inertial RF0. Let us present two expressions that will be necessary for the future analysis. The

following integral is easy to calculate in the form

0 -y{AK} ,{K}

( )k-.+lpk-,+t__ - k . y{As-l} ×
.:1 (;- _,W:_TT)_

f ( )k-.+lpk-.+l: - k ._,i__,_.a z(_)_K__+,_ (G3)

The same quantity will have the following form in the coordinates (x p) of the inertial RF0:

Ba3 I { 0 __• p.kx ,_'" _o(_°))×

(..-
]--

=E -- k Xs=, (£:_-;¥T) _(x_- Y_°(x°)){s-'}

X / 0 /u ] =/._'.'.p._.,x-y_o('°))_--z[_ ("-i.-'"I{_-'+'_-.,-i

£ ( )k-s+lpk-s+l 8 Z(xP)(BK-S+I) (G4)__. - k

,=, (.;: i).,-_: ;TT)_(x" - _,_,o(X°)){_-'}._

where potential Z(xP)_ ) was defined as

Z(z.)_) f B d'z' tz,z ZBo= ]z;:z"i .pB / 0 ,,_ , (zO)).(zU_zW){S}.
(G5)

G.3. The Form of the 'Inertial Friction' Term.

A 0 u
The following term in the temporal component of the metric tensor goo(YA, YA), eq.(4.16b), has

the meaning of the gravitational inertial friction:

/B _ - '_ _'_ /--"_" "-' '-"--QA(YA'Y'A_')]a _IAgB|?JA_?I A _jr_ --
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Substitutionin this relationof the obtainedfunctionQ_ will enable us to present the 'inertial
friction' term as follows:

0 _ 0 lu

B L, , 0_ a [O.4(YA, YVA)-- QA(YA, YA) 13, o ,_ tYAJ)_[ ....d YAPB(YA, YA "bYBAo lY_ Yt_l J

_/OUs,\ l+

B'¢A

+lv_ , 0,vZ , 0_ 02
_ AotY.4) AotYAJ" _, ZXB(YOA,Y_) +

OYAOYA

5 _, o 0 o 02

+sa_°(YA) 0-_ _B(_A'y_) - f_ 0y_0y__.(yo y_)+

k l (_)z-,+lp[-,+_ 0 _., q,(L_s+l)_
+_-_ _ o

l>_3 s=l

+O(c-4) + o(ly_l_+_) (G6)

G.4. The Form of the Interaction Term.

Making use of the solutions for the functions KA, LA, and Q_ of the coordinate transformation,
_int<4> in any coordinate system. Thus, forone may also obtain the form of the interaction term "00

example, in the coordinates of the inertial RF0 from eq.(4.6), we have the following expression:

hint<4> f_O _u_ /B d3x_
B C

B B

_ (_/-,+,p/-,+,
+ EQ_{L} (xO) E (_l_i__.(___77r)!(xU Y_Bo(XO)){S-1} C_XNO Z(xq)(BP-S+I)

I_>3 s=l

-2QB •UB(x°,x_)- fAZ 02 ]•_%-_zXB(_°, _") + 0(_-4) + 0(I_'" -- YGo(xO)l_+_). (G7)

G.5. The Form of the Riemann Tensor in the Proper RFA.

We are using the following notation for the components of the Riemann tensor:

k k l k l k
Rmn p = OpFmn - OnFkmp q- FmnFlp - FmpFin. (G8)
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(i). By makinguse of the expressions for the metric tensor gAn(_A) given by eqs.(6.7), one

will obtain the following post-Newtonian expansions of the components of this tensor in an

arbitrary RF (zP):

0 F0<2 > <2> 0 _0<2> 0 F0<4 > 0 F0<3>_
_o_(zp) = _ _o + goo -_-ZzZl_o + g[j _,o OzO _ "

ro<2>ro<2> T,_<2>F0<2> O(c-6), (G9a)

0 F0<3 > 0 F0<3 >
_._(zp) = Oz---__._ SzZ .z + °(c-s), (G9b)

0 ._<2> 0 r_<2>)+ O(c_4).Ro"z° (zP) = "_w' -g-Zz_ __'_ OzZ (G9c)

(ii). By making use of expressions (G9), one may obtain the components of the Riemann tensor

Rmnpk in the coordinates (x p) of the barycentric inertial RF0 as follows:

02ORB
R°°°_(z°' z_) = - _ 0x_0z_

B
1 02H_04> (OUB OUB+ 2 OxaOx _ + _ Ox c_ Ox,s

B

o_vD o=vD ows I-Y-2_ 2_o_ooz_ + 2_ozooz_ _,'_xo2 ) + °(c-6), (aZOa)
B

I _v_ o_vD
B

[ 02UB 02Us )+ _ ['7"_0-7-_<, "_"_OxOOx_ +O(c-S)' (al0b)
B

02UB 02UsR<_.n_,(z°, z") = _ "_<_OzvOz-------;+ "_"_O_x_

(92 UB 02 UB )_,,/Z, Ox_Ox<, 7a_.Ox,(gx _ + O(c-4). (G10c)

(iii). By making use of the expressions for the connection components F_p presented by the

relations of eqs.(F2), one may obtain the components of the Riemann tensor R_npk in the

coordinates (_A) of the proper RFA as follows:

/ (92UB 1 02H_04>

< )o: - , )o+ < )o+

+<(gUA OUA \ OUA OUA _ + 2_a_a_oaAo) _ anoaaao_ -o_ _ Io- _"" ( o_ o_-Z,o

o ( IovD ,ovD, /(gu,_,,_ +O(c__),+ (Glla)
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2,_OlX t., "B

i 02Us OY°AOY_A ))0 + °(c-5)' (anb)

02UB / c_2UB

_ / 02UB 02UB

It is interesting to note that in the case when the local gravity produced by the body (A)

under consideration may be neglected, the Riemann curvature tensor (G10) is formed only by

the gravitational field of the other bodies in the system. This suggests that one may extend the

generalized Fermi conditions in the local region of body (A) (or at the immediate vicinity of its

world-line 7A, given by relations (5.2)), as follows:

= g,-,.,(_) + 6g_*)(,--,ly.g.I2)+ O(lyii3), (G12a)

k
Fmn(y_) = rk(loc)f.,v_ ,_pk(_t)(*-,,_ _,A,+ --m,, ," ly.11)+ O(ly.11:), (G12b)

P_"_*(_A)= R_n'c*(Y°) "_,,+ O(lY.I.I), (G12c)

where superscript ext denotes the external sources of gravity. Relations (G12) summarize our

expectations based on the Equivalence Principle about the local gravitational environment of the

self-gravitating and arbitrarily shaped extended bodies.
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Appendix H: Some Important Identities.

In this appendix, we will present some identities necessary to reduce the expressions in Section 6.

We will use the definition for the total mass density of the system _ in the coordinates (_A) as
given by (6.4); for the total Newtonian potential ff as given by (6.17); and for the total vector

potential of the system V a as given by expression (6.20). Then, one may obtain the required

identities simply by using the eq.m. (6.6), the Poisson equations for the potentials ff and V _

(6.18) and (6.21), respectively, and with the help of expression (6.22):

[0 v°-0ov,]=-_Oy---_A+ -_v_

1o( a  oj)
i 0 / _--_ --V_ --v_,°_°Y [o_V _ _°V_][_S o_V_]

> _0-Z+ = >or)

(H1)

+ -_ua'_u, (H2)

-_o_v_= _o_[o_-_o_v_+o_vo_v_-._°_o_-uo_'v_]+>_o_-& (H3)

where F _e is defined as follows:

1 [o_fae g + aefa_ g _ ..#eO,,s,O_,g]" (H5)

The following identities are also easy to verify:

(H6)

(H7)
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(H8)

(H9)

h

From the equation for the potential W (6.23a) and with the help of (H4), one obtains

_Oc'w=lo_F°'_(w)+lcg_U[4,.z_-fiB(H-2vuv,<.'+_)-

- E O_o_- _E O_U_(_a_o+Z O_U_,)+
B B B I

<_ o;:,uBo+ _ o_uso,o,')y_aL}]+-_V(ly_l_+')+-_o(6-6).
l>_3 B B

(H10)

The following identity may be written in two different ways. In order to reflect this ambiguity,
we present it as follows:

OU OU 0 ( a , -fi-U+ 2a , - 30u-_O.-_) +-_ouo +2-_v._ = _ -s;

0 i 1 - al -- O-U a2-_OuO__.o a2)__fi__vU+
+_y_ t_OUU_yOA + + (a_ +47r Oy A

2 - al - az&-_[O<,V. _ 0uV.])-_ 47r

where al and a2 are arbitrary numbers.

(Hll)

One can verify the correctness of the following identities necessary to reduce the terms in

equation (6.32) that contain the functions Q_{L} with l > 3:

0 {L)

l>3

k k

l>3 I>3

(H12)
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k k

.-p_-" 2 _ .O_oQ_{_}(y°) y_} + 2T_.Z ° oOoQA{L}(YA) 0"Y_L}+
1_>3 l>3

k

+ao(_._)E ° o o_yi_ _ [,_
QA{L}(YA)" Oy_

l>3 I>_3

k k
-- a 0 a 0+

_YA i>3 z>3

k k

A{L} (YA) " -- QA{L} (YA)"

I>3 l>3

(H13)

k

10c, rE QA{L}(YA)[2Ecg_AUB .O_y{AL} +cg, Us.O_cg_y{AL}] :41r
I>3 B

l_>3

+OAF E 2 [ 1 -,Aw,_a {L} _ Cga-_OAy{AL}
t>3 QA{L}(Y°A)k-2a uo YA

(H14)

k k

[,E o o ooQA{L}(YA) " QA{L}(YA) " +
OyOA I>3 l>_3

2 k k

_ d [x---,Qa ,yO,y{L}l 0 [p_ a=_--_kz. _ A) _ 1-o--_ Q_(_)°_]
_YA l>3

(H15)
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Appendix I: Astrophysical Parameters Used in the Report.

In this appendix, we present the astrophysical parameters used in the calculations of the gravi-
tational effects for the Mercury Orbiter mission in Section 7 of this report:

Solar radius :/_ = 695 980 km,

GM®
Solar gravitational constant : #o = c2 - 1.4766 kin,

Solar quadrupole coefficient (Brown et al., 1989) : J2® = (1.7 -t- 0.17) x 10 -7,

Solar rotation period : To = 25.36 days,

Mercury's mean distance : aM -= 0.3870984 AU = 5.791 × 10 7 km,

Mercury's radius : RM = 2 439 km,

GMM _ 1.695 × 10-7#®,Mercury's gravitational constant : #M -- c2

Mercury's sidereal period : TM ----0.241 yr = 87.96 days,

Mercury's rotational period : _-M = 59.7 days ,

Eccentricity of Mercury's orbit : eM = 0.20561421,

Jupiter's gravitational constant : #j = 9.547 x 10-4#®,

Jupiter's sidereal period : Tj = 11.865 yr,

Astronomical Unit :AU = 1.49597892(1) x l0 s kin.
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